Math, asked by sarmeet0419, 5 months ago

A convex polygon of n sides has 135 diagonals in total, find the value of n.​

Answers

Answered by yashsonkar658
0

Step-by-step explanation:

Solution :– n= -15;n=18 ==>Thus, we don't have any negative side.So, the number of sides are 18.

hope it helps u

Answered by ITZBFF
38

 \mathsf \red{Given \: } \\

 \mathsf{Diagonals \:  of  \: a \:  polygon \:  =  \: 135}

 \\  \mathsf{formula \: to \: find  \: sides,\: if \: diagonals \: are \: given} \\  \\  \boxed{ \mathsf \blue{ \frac{n(n - 3)}{2}  = no. \: of \: diagonals}} \\

 \mathsf \red{then,} \\  \\

 \mathsf{ \frac{n(n - 3)}{2}  = 135} \\  \\

 \mathsf{n(n - 3) = 135 \times 2} \\  \\   \mathsf{{n}^{2} - 3n =  270 \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \\  \mathsf{ {n}^{2}  - 3n - 270 = 0} \\  \\

\mathsf \red{by \: using \: quadratic \: formula : } \\  \\ \boxed{ \large\mathsf \blue{x =  \:  \frac{\:  \: - b \: \pm \: \sqrt{ {b}^{2} - 4ac } }{2a} }} \\  \\

 \mathsf{a = 1, \: b =  - 3 \:, \: c =  - 270 } \\  \\  \mathsf \red{by \: substituing \: we \: get :  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \\

 \mathsf{n =   \frac{ -  ( - 3)  \: \pm \:  \sqrt{ {( - 3)}^{2} - 4(1)( - 270) } }{2(1)} } \\  \\  \mathsf{n =  \frac{3 \:  \pm \:  \sqrt{9 + 1080} }{2} } \\  \\  \mathsf{n =  \frac{3 \:  \pm \:  \sqrt{1089} }{2} } \\  \\  \mathsf{n =  \frac{3 \:  \:  \pm \: 33}{2} } \\  \\  \mathsf{n =  \frac{3 +  33}{2}   \:  \: \: ; \:  \:  \:  n = \frac{3 - 33}{2} } \\  \\  \mathsf{n =  \frac{36}{2}  \:  \: ; \:  \: n =  \frac{ - 30}{2} } \\  \\  \mathsf{n \:  =  \: 18 \:  \:  \: ; \: n =  - 15 } \\  \\  \mathsf \red{sides \: of \: a \: polygon \: will \: never \: be \: as \: negative \: ; \: so} \\  \\   \boxed{\mathsf{n = 18}}

\mathsf\red{\therefore \: sides \: of \: a \: Convex \: polygon \: = \: 18}

Similar questions