Physics, asked by srihari890, 5 months ago

A copper block of mass 2.5 Kg is heated in a furnace to a temperature of 500 °C and then placed on a large ice blocks. What is the maximum amount of ice that can melt?

Answers

Answered by ITZBFF
7

   \boxed{\boxed{\sf \red{Values \:  to \:  be \:  noted}}} \\

 \rm{Specific \: heat \: of \: copper \:  =  \: 0.39 \:J  {g}^{ - 1} K^{ - 1}  }

 \rm{latent \: heat \: of \: fusion \: of \: water \:  =  335\: J  {g}^{ - 1} }

   \boxed{\boxed{\sf \red{Let \:  us  \: come \:  to \:  question}}} \\

A copper block of mass 2.5 Kg is heated in a furnace to a temperature of 500 °C and then placed on a large ice blocks. What is the maximum amount of ice that can melt ?

 \underline{ \underline{ \sf \red{Answer : }}}

 \sf{Given}

 \sf{mass \: of \: copper \: block, m_{1} \:  =  \: 2.5 \: kg}

 \sf{Specific \: heat \: of \: copper \:  =  \: 0.39 \:J  {g}^{ - 1} K^{ - 1} = 0.39 J \:  {kg}^{ - 1}  {C}^{ - 1}  }

  \sf{Temperature  \: of \:  furnace \:  \Delta \theta = 500°C}

\sf{latent \: heat \: of \: fusion \: of \: water \:  =  335\: J  \:  {g}^{ - 1} = 335 \times  {10}^{3} J  \: {kg}^{ - 1}  }

 \sf{If \:  Q  \: be \:  the  \: heat  \: absorbed  \: by \:  the \:  copper  \: block, then}

 \boxed{ \boxed{ \sf \red{Q = m_{1} S \Delta \theta}}} -  -  - (1)

 \sf{Let  \: m_{2}  \: be  \: the \:  mass  \: of  \: ice \:  melted  \: when \:  copper  \: block \:  is \:  placed \:  on  \: it,}

  \boxed{\boxed{ \sf \red{ \therefore \: Q = m_{2} L}}} -  -  - (2)

 \sf \red{From  \: (i) \& (ii),  \: we  \: get}

 \sf{m_{1} S  \: \Delta \theta = m_{2} L}

 \sf{ m_{2}  =  \frac{m_{1} S  \: \Delta \theta}{L} } \\

 =  \frac{2.5 \times 0.39 \times  {10}^{3} \times 500 }{335 \times  {10}^{3} }  \\

 = 1.455 \: kg

 \approx \: 1.5 \: kg

Answered by sangeetseth626
1

Answer:

Explanation:

Mass of copper block , m = 2.5 kg = 2500 g

Rise in temperature of the copper block = 500°c

Specific heat of copper , C = 0.39 J/g°C

Heat of fusion of water L =335 J/G

The maximum heat the copper block can lose,

Q=m c

= 2500 x 0.39 x 500

=487500 J

Let m 1 g  be the amount of ice that melts when the copper block is placed on the ice block.  

Q =m  1 L

m 1 Q/L=487500/335=1455.22g

Hence, the maximum amount of ice that can melt is 1.45 kg.

​  

Similar questions