Math, asked by siddhijain09875, 9 months ago

A copper rod of diameter 1 cm and length 8 cm is drawn in to a wire of length 18 m of uniform thickness. find the thickness of wire​

Answers

Answered by Anonymous
4

❏ Formula Used:-

For a right circular cylinder of base radius r and height h,

\sf\longrightarrow\boxed{ L.S.A=2\pi r h}

\sf\longrightarrow\boxed{ T.S.A.=2\pi r (r+h)}

\sf\longrightarrow \boxed{Volume=\pi r{}^{2}h}

Where, •L.S.A.=Curved Surface area.

•T.S.A.=Total Surface Area.

━━━━━━━━━━━━━━━━━━━━━━━

❏ Solution:-

Q) A copper rod of diameter 1 cm and length 8 cm is drawn in to a wire of length 18 m of uniform thickness. find the thickness of wire.

And)

For the copper rod

•diameter(D)=1 cm

•radius(R)= \frac{1}{2}\:cm=0.5 \:cm

•length(L)=8 cm

\therefore Volume_{rod}=(\pi\times (0.5){}^{2}\times 8) \:cm{}^{3}

•For the copper wire

•radius(r)=?

•length(l)=18 m=1800 cm

\therefore Volume_{wire}=(\pi\times (r){}^{2}\times 1800) \:cm{}^{3}

Now, as the rod is drawn to a wire ,so the volume of the Rod & wire is same .

\therefore Volume_{wire}=Volume_{rod}

\therefore \pi\times (r){}^{2}\times 1800=\pi\times (0.5){}^{2}\times 8

\sf\longrightarrow r{}^{2}=\frac{0.5\times0.5\times8}{1800}

\sf\longrightarrow r{}^{2}=\frac{1}{900}

\sf\longrightarrow r=\sqrt{\frac{1}{900}}

\sf\longrightarrow r=\frac{1}{30}\:cm

\sf\longrightarrow d=2r=\cancel2\times\frac{1}{\cancel{30}}\:cm

\sf\longrightarrow d=\frac{1}{15} \:cm

\sf\longrightarrow\boxed{\red{ d=0.067 \:cm \:\:(almost)}}

\therefore Thinness of the wire= 0.067 cm.

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions