Math, asked by jgxgjxugdugdyifihf, 4 months ago

a copper sphere of diameter 6 cm is melted and recast into a right circular cone of radius 6 cm. then the height of the cone is​

Answers

Answered by Anonymous
66

Given :

  • Diameter of the copper sphere = 6 cm
  • Radius of the recast right circular cone = 6 cm

To Find :

  • The height of the recast right circular cone

Solution :

Radius of sphere will be 6/3 cm = 2 cm. {Since , 2(radius) = diameter}

Here , In this case ;

  • Volume of the Sphere will be equal to the volume of recast right circular cone

Volume of sphere is given by ,

 \\  \star \: {\boxed{\purple{\sf{Volume_{(sphere)} =  \frac{4}{3}\pi {r}^{3}  }}}} \\  \\

Here ,

r is radius of the sphere

Substituting the values we have ,

 \\   : \implies \sf \: Volume_{(sphere)} =  \frac{4}{3}  \times  \frac{22}{7}  \times  {(3)}^{3}  \\  \\

 \\   : \implies \sf \: Volume_{(sphere)} =  \frac{4}{3}  \times  \frac{22}{7}  \times 27 \\  \\

 \\   : \implies \sf \: Volume_{(sphere)} =  \frac{4 \times 22 \times 9}{7}  \\  \\

 \\   : \implies{\underline{\boxed{\red {\mathfrak{ Volume_{(sphere)} =  \frac{792}{7} }}}}} \:  \\  \\

\qquad━━━━━━━━━━━━━━━━━

Volume of a cone is given by ,

 \\  \star \: {\boxed{\purple{\sf{Volume_{(cone)} =  \frac{1}{3}\pi {r}^{2}h  }}}} \\  \\

Here ,

r is radius of cone

h is height of cone

Substituting the values we have ,

 \\    : \implies \sf \: Volume_{(cone)} =  \frac{1}{3}  \times  \frac{22}{7}  \times  {(6)}^{2}  \times h \\  \\

 \\   : \implies \sf \: Volume_{(cone)} =  \frac{1}{3}  \times  \frac{22}{7}  \times 36 \times h \\  \\

 \\   : \implies \sf \: Volume_{(cone)} =  \frac{22 \times 12 \times h}{7}  \\  \\

 \\   : \implies{\underline{\boxed{\red {\mathfrak{Volume_{(cone)} =  \frac{264h}{7} }}}}} \\  \\

\qquad━━━━━━━━━━━━━━━━━

Now , Applying the condition ;

 \\   : \implies \sf \:  \frac{792}{7}  =  \frac{264h}{7}  \\  \\

 \\   : \implies \sf \: 792 = 264h \\  \\

 \\  :  \implies \sf \: h =  \frac{792}{264} \\  \\

 \\   : \implies{\underline{\boxed{\pink {\mathfrak{h = 3 \: cm}}}}} \:  \bigstar \\  \\

 \\  \therefore{\underline{\sf{Hence \:  ,  \: The \:  height  \: of  \: the \:  right \:   \: circular \:  cone \:  is \:  \bold{ 3 cm}}}}

Answered by darksoul3
2

\large\bf{\underline\orange{Answer \:↝}}

Copper sphere radius r = 3 cm

Cone height h =3 cm

Radius of the base of cone R = ?

Volume of copper sphere = 4/3πr³

= 4/3π(3)³

= 36π cm³

Volume of Cone = 1/3πR²h

= 1/3πR²(3)

= πR²cm³

Volume of copper sphere = Volume of cone

∴ 36π=πR²

∴ R² =36

∴ R=6 cm

Similar questions