Math, asked by hellhood, 3 months ago

A copper wire is bent in the form of a square of side 44cm. If it is re-bent in the form
of a circle, then find the following: (Take = 22 ) 7
a) The perimeter of the square
b) The circumference of the circle
c) The radius of the circle
d) Area of the circle.

Answers

Answered by jackzzjck
12

SOLUTION

a) The perimeter of the square

Perimeter of the square = 4a

Side of the square(a) = 44cm.

⇒ Perimeter = 4 × 44

⇒ Perimeter = 176 cm.

b) The circumference of the circle

Circumference of the Circle = Perimeter of the square

⇒ Circumference of the Circle = 176cm.

c) The radius of the circle

Circumference of a circle = 2πr

Here,

Circumference = 176cm.

\implies \sf  Circumference = 2*\pi  *r

\implies 176 = 2πr

\implies \sf \pi r =\dfrac{176}{2}

\implies \sf \pi r= 88

\implies \sf 22r = 88*7

\implies \sf 22r = 616

\implies \sf r = \dfrac{616}{22}

∴ Radius (r) = 28cm.

d) Area of the circle.

Area of a circle = πr²

Here,

r = 28cm.

\implies \sf Area \: of\: the \: circle = \dfrac{22}{7} * 28^2

\implies \sf Area \: of\: the \: circle = \dfrac{22}{7} * 784

\implies \sf Area \: of\: the \: circle = 22 * 112

\implies \sf Area \: of\: the \: circle = 2464 cm^2.

Answered by TheBrainlyStar00001
14

Yᴏᴜʀ Qᴜᴇsᴛɪᴏɴ

  • A copper wire is bent in the form of a square of side 44 cm. If it is re-bent in the form of a circle, then find the following : -
  • a) The perimeter of the square.
  • b) The circumference of the circle.
  • c) The radius of the circle.
  • d) Area of the circle.

Rᴇǫᴜɪʀᴇᴅ Aɴsᴡᴇʀ.

\\  \large{ \frak ✧\:\:{ \underline { \:  \:{ \color{purple}{ \frak { a) \:   \:   The \: perimeter \: of \: the \: square \:   : -   }}}}}} \\  \\

  \dag \:  \: \sf \underline {As \: we \: know \: that \:  :  -  \tt   Perimeter  \: of  \: square \:  =  \:  4 \times side.} \\  \\

  \tt \underline{  : \implies \: perimeter \: _ { \sf \color{violet}(square)} \:  =   \:4 \:  \times  \: side } \\  \\

\tt \underline{  : \implies \: perimeter \: _ { \sf \color{violet}(square)} \:  =   \:4 \:  \times  \: 44 \: cm } \\  \\

\underline{\boxed{\tt {  : \implies \: p \: = \:{ \color{purple} \: 176 \: cm .}}}} \\  \\

\large{ \frak ✧\:{ \underline { \:  \:{ \color{purple}{ \frak { b) \:   \:   The \: circumference \: of \: the \: circle \:   : -   }}}}}} \\  \\

  \dag \:  \: \sf \underline {As \: we \: know \: that \:  :  -  \tt \:Circumference  \: of \:  circle \:  = \:  Perimeter  \: of  \: square} \\  \\

  \tt \underline   {: \implies{Circumference  \:_{  \sf \color{violet}( circle )}\:  = \:  Perimeter    \: _{  \sf \color{violet}(  square)}}} \\  \\

\underline{\boxed{\tt    {: \implies\:C  \:  = \:  { \color{purple}{176 \: cm}   \: }}}} \\  \\

\large{ \frak ✧\:\:{ \underline { \:  \:{ \color{purple}{ \frak { c) \:   \:   The \: Radius \: of \: the \: circle \:   : -   }}}}}} \\  \\

  \dag \:  \: \sf \underline {As \: we \: know \: that \:  :  -  \:  \:  { \boxed{ \tt{\:r \:_{ \sf \color{violet}(radius)}  \:  =  \:  \frac{c \: _{ \sf \color{violet}(circumference)}}{2 \times  \pi}}}} } \\  \\

   \tt \underline{   : \implies{\:r \:_{ \sf \color{violet}(radius)}  \:  =  \:  \frac{c \: _{ \sf \color{violet}(circumference)}}{2 \times  \pi}} }\\  \\

   \tt \underline{   : \implies{\:r \:_{ \sf \color{violet}(radius)}  \:  =  \:  \frac{176 \: cm \: _{ \sf \color{violet}(circumference)}}{2  \: \times  \frac{22}{7}  }} }\\  \\

   \tt \underline{   : \implies{\:r \:_{ \sf \color{violet}(radius)}  \:  =  \:  \frac{176 \: cm \: _{ \sf \color{violet}(circumference)}}{ \dfrac{2 \:  \times  \: 22}{7}  }} }\\  \\

\tt \underline{   : \implies{\:r \:_{ \sf \color{violet}(radius)}  \:  =  \:  \frac{176 \: cm \: _{ \sf \color{violet}(circumference)}}{ \dfrac{44}{7}  }} }\\  \\

\tt \underline{   : \implies{\:r \:_{ \sf \color{violet}(radius)}  \:  =  \:  \frac{176 \: cm \:  \times  \: 7}{44 }} }\\  \\

\tt \underline{   : \implies{\:r \:_{ \sf \color{violet}(radius)}  \:  =  \:  \frac{1232}{44 }} }\\  \\

 \underline{ \boxed{ \tt{   : \implies{ \purple{\:r \:  \:  =  \:  28}}} }}  \:  \: \bigstar\\  \\

\large{ \frak ✧\:\:{ \underline { \:  \:{ \color{purple}{ \frak { d) \:   \:   The \: Area\: of \: the \: circle \:   : -   }}}}}} \\  \\

  \dag \:  \: \sf \underline {As \: we \: know \: that \:  :  -  \:  \:  { \boxed{ \tt{\:a \:_{ \sf \color{violet}(area \: of \: circle)}  \:  =  \:   \pi \: r {}^{2} }}} } \\  \\

   { \underline{ \tt{  : \implies\:a \:_{ \sf \color{violet}(area \: of \: circle)}  \:  =  \:   \pi \: r {}^{2} }}} \\  \\

   { \underline{ \tt{  : \implies\:a \:_{ \sf \color{violet}(area \: of \: circle)}  \:  =  \:  \frac{ 22  }{ 7  }   \times  28  ^ { 2  }  }}} \\  \\

   { \underline{ \tt{  : \implies\:a \:_{ \sf \color{violet}(area \: of \: circle)}  \:  =  \: \frac{22}{7}\times 784  }}} \\  \\

   { \underline{ \tt{  : \implies\:a \:_{ \sf \color{violet}(area \: of \: circle)}  \:  =  \:  \frac{22\times 784}{7}  }}} \\  \\

{ \underline{ \tt{  : \implies\:a \:_{ \sf \color{violet}(area \: of \: circle)}  \:  =  \:    \frac{17248}{7} }}} \\  \\

{ \underline{ \boxed{ \tt{  : \implies\:{ \purple{a   \:  =  \:    2464 }}}}}}  \:  \:  \bigstar\\  \\

Hope it helps u

Similar questions