Math, asked by zikrashanna7506, 1 year ago

A copper wire is when bent in the form of a square encloses an area of 121 cm^2 .if the same wire is bent in the form of circle it is encloses an area equal ro

Answers

Answered by mitvathetp6xfvt
0
area of square = 121. so side = 11.  now perimeter of sq = 4*11=44
Thus length of wire is 44. circumference is 44
2 \pi r = 44
solving we get r = 7 and area of circle = 154
Answered by Anonymous
4

___________------

 \large \boxed{ \textsf{given:-}}

 \texttt {\: enclosed area of steel wire when bent to form square = 121 \: sq.cm }

 \large \boxed{ \textsf{to find out:-}}

 \textsf{the area of circle}=??

  \large \boxed{ \rm \: solution:-}

 \rm \: Side  \: a \: square \:  =  \sqrt{121}cm  = 11cm

 \rm \: perimeter \: of \: square = (4   \times 11)cm = 44cm

 \rm \therefore \: length \: of \: the \: wire \:  = 44cm

 \rm \therefore \: circumference \: of \: the \: circle \:  = length \: of \: wire = 44cm

 \textsf{let the radius of the circle be }r \rm \: cm

 \rm \: then \: 2 \pi \: r = 44 \implies \: 2 \times  \large \frac{22}{7}  \small r = 44 \implies \: r = 7

 \rm \therefore \: area \: of \: the \: circle =  \pi \: r {}^{2}

 \large \rm \:  =  \huge( \small \frac{22}{7}  \times 7 \times 7 \huge) \small \:cm {}^{2}  = 154 \: cm {}^{2}

Similar questions