Physics, asked by Anonymous, 6 months ago

A copper wire of 3 m length and 1 mm diameter is subjected to a tension of 5 N. Calculate the elongation produced in the wire if the Young’s modulus of copper is 120 GPa.

Answers

Answered by mad210203
13

Given :

The length of copper wire = 3m = 3000mm

Diameter of wire = 1mm

Tension / Force = 5N

Young's Modulus = 120GPa = 120000N/mm^{2}

To Find:

We have to find the elongation produced in the copper wire.

Solution:

The elastic properties of linear objects like wire, rods, etc. which are either stretched or compressed, a convenient parameter is the ratio of the stress to the strain, the parameter is called Young's modulus (E).

Young's Modulus, E =  \frac{Stress}{Strain}

Area of the copper wire, A = π×r^{2} =π×\frac{d^{2} }{4}

                                        = \frac{\pi }{4} mm^{2}

→   Stress, σ = \frac{Force}{Area}

  where; F is the tensile force

              A is the cross-sectional area of wire

            σ = \frac{Force}{Area}

               \[\begin{array}{l} = \frac{{5 \times 4}}{\pi }\\\\ = \frac{{20}}{\pi }\,N/m{m^2}\end{array}\]

 →  Strain,ε =  \[\frac{{\Delta L}}{L}\]

   where, \[\Delta L\] is the elongation.

Combining the two equations we get,

              \[\begin{array}{l}E = \frac{{{\raise0.7ex\hbox{${20}$} \!\mathord{\left/ {\vphantom {{20} \pi }}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$\pi $}}}}{{{\raise0.7ex\hbox{${\Delta L}$} \!\mathord{\left/ {\vphantom {{\Delta L} L}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$L$}}}}\\\\\Delta L = \frac{{20 \times L}}{{\pi  \times E}}\\\\\Delta L = \frac{{20 \times 3000}}{{\pi  \times 120000}}\\\\\,\,\,\,\,\,\,\, = 0 \cdot 159\,mm\end{array}\]

∴ The elongation of the copper wire = 0·159 mm ( As per the given data).

Attachments:
Similar questions