Physics, asked by ruttusingh, 11 months ago

A copper wire of of 2.5 x 10 m² area
carries a current of 1.6 A. If the number
of density of the electrons in the wire is
8 x 1028/m}, then calculate the drift
speed of the electrons in the wire.
(e = 1.6 x 10-19 C)​

Answers

Answered by Anonymous
7

\huge\underline{\underline{\bf \green{Question-}}}

A copper wire of of 2.5 x 10 m² area carries a current of 1.6 A. If the number of density of the l electrons in the wire is 8 x {\sf 10^{28}\:m^{-3}} then l calculate the drift speed of the electrons in the wire. (e = 1.6 x 10-19 C)

\huge\underline{\underline{\bf \green{Solution-}}}

\large\underline{\underline{\sf Given:}}

  • Area (A) = 2.5 × 10 m²
  • Current ( I ) = 1.6 A
  • Number of Density of electron ( n ) = {\sf 8×10^{28}\:m^{-3}}
  • e = {\sf 1.6×10^{-18}C}

\large\underline{\underline{\sf To\:Find:}}

  • Drift speed of electron. {\sf (v_d)}

\large{\boxed{\bf \blue{v_d=\dfrac{I}{neA}}}}

\implies{\sf \dfrac{1.6}{8×10^{28}×1.6×10^{-19}×2.5×10}}

\implies{\sf \dfrac{1.6}{320×10^9} }

\implies{\sf  5×10^{-3}×10^{-9}}

\implies{\bf \red{v_d=5×10^{-12}\:m/s} }

\huge\underline{\underline{\bf \green{Answer-}}}

Drift speed of Electron is {\bf \red{5×10^{-12}}}

Similar questions