Math, asked by nehu3, 1 year ago

a copper wire when bent in the form of a square encloses an area of 121cmsquare.if the same wire is bent into the form of a circle.find the area of the circle

Answers

Answered by PinkSkull
9
Area of square = 121cm²
S x S = 121
2S = 121
  S = √121
 S = 11

Perimeter of the square = 4 x S
                                          = 4 x 11
                                          = 44
Circumference of circle = 2 \pi r
                    44                =2 × 3.14 × r
                     44/2 × 3.14=r
              22 x 3.14=r
             69.28=r
Area =  \pi
         3.14 x 69.28²
         3.14 x 4799.7184
      

15071.115776

Hope it helps
Answered by Anonymous
34

□□□□□

 \large \boxed{ \textsf{given:-}}

 \texttt {\: enclosed area of steel wire when bent to form square = 121 \: sq.cm }

 \large \boxed{ \textsf{to find out:-}}

 \textsf{the area of circle}=??

  \large \boxed{ \rm \: solution:-}

 \rm \: Side  \: a \: square \:  =  \sqrt{121}cm  = 11cm

 \rm \: perimeter \: of \: square = (4   \times 11)cm = 44cm

 \rm \therefore \: length \: of \: the \: wire \:  = 44cm

 \rm \therefore \: circumference \: of \: the \: circle \:  = length \: of \: wire = 44cm

 \textsf{let the radius of the circle be }r \rm \: cm

 \rm \: then \: 2 \pi \: r = 44 \implies \: 2 \times  \large \frac{22}{7}  \small r = 44 \implies \: r = 7

 \rm \therefore \: area \: of \: the \: circle =  \pi \: r {}^{2}

 \large \rm \:  =  \huge( \small \frac{22}{7}  \times 7 \times 7 \huge) \small \:cm {}^{2}  = 154 \: cm {}^{2}

Similar questions