Math, asked by Anonymous, 1 year ago

A cos a+ b sin a= m and a sin a- b cos a=n then a(square)+b(square)=?​

Answers

Answered by ihrishi
0

Step-by-step explanation:

Given:

a cos a + b sin a = m....... (1)

a sin a - b cos a = n.......... (2)

Multiplying (1) by cos a and (2) by sin a and adding them:

a {cos}^{2} a + b \: sina \: cosa \:  = m \: cos a \\ a {sin}^{2} a - b \: sina \: cos a \:  = n \: sin \: a \\ a( {cos}^{2} a +  {sin}^{2} a) = m \: cos \: a + n \: sin \: a \\ a \times 1 = m \: cos \: a + n \: sin \: a \\ a  = m \: cos \: a + n \: sin \: a \\ substituting \: the \: value \: of \:  a \: in \\  \:equation \:  (1) \: we \: find:  \\ (m \: cos \: a + n \: sin \: a)cos \: a + b \: sin \: a \:  = m \\ m {cos}^{2} a + n \: sina \: cosa + b \: sin \: a \:  = m \\ b \: sin \: a = m - m {cos}^{2} a  -  n \: sina \: cosa\\ b \: sin \: a = m (1-  {cos}^{2} a)  -  n \: sina \: cosa\\ b \: sin \: a = m \:  {sin}^{2} a -  n \: sina \: cosa \:  \\ b \: sin \: a = sin \: a(m \:  {sin} a -  n \:cosa ) \\ b \:  = m \:  {sin} a -  n \:cosa  \:  \\ now \:  \\  {a}^{2}  +  {b}^{2}  = (m \: cosa + n \: sin \: a)^{2}  \\ +  (m \: sina  -  n \: cos \: a)^{2} \\  =  {m}^{2}  {cos}^{2}a  + {n}^{2}  {sin}^{2}a  + 2mn \: sina \: cosa \\  +  {m}^{2}  {sin}^{2} a \:  +  {n}^{2}  {cos}^{2} a - 2mn \: sina \: cos \: a \\  =  {m}^{2} ( {sin}^{2} a +  {cos}^{2} a) +  {n}^{2} ({sin}^{2} a +  {cos}^{2} a) \\  =  {m}^{2}  \times 1 +  {n}^{2}  \times 1 \\  =  {m}^{2}  +  {n}^{2}  \\ thus \\  {a}^{2}  +  {b}^{2}  =  {m}^{2}  +  {n}^{2}

Answered by Anonymous
0

Given

→ a cosA + b sinA = m

→ a sinA - b cosA = n

Solution

→ m² = (a cosA + b sinA)²

→ m² = a² cos²A + b sin²A + 2a cosA· b sinA

→ n² = a² sin²A + b² cos²A - 2 a cos·b sinA

On adding m² and n², 2 acosA·bsina cancel out.

→ m² + n² = a²sin²A + b cos²A + a²cos²A + b² sin²A

→ m² + n² = a²(sin²A + cos²A) + b²(sin²A + cos²A)

Since sin²A + cos²A = 1, hence

→ m² + n² = a² + b²

Hence required answer is m² + n².

Similar questions