Math, asked by Anonymous, 1 year ago

A cos a+ b sin a= m and a sin a- b cos a=n then a(square)+b(square)

Answers

Answered by Anonymous
1

Given

→ a cosA + b sinA = m

→ a sinA - b cosA = n

Solution

→ m² = (a cosA + b sinA)²

→ m² = a² cos²A + b sin²A + 2a cosA· b sinA

→ n² = a² sin²A + b² cos²A - 2 a cos·b sinA

On adding m² and n², 2 acosA·bsina cancel out.

→ m² + n² = a²sin²A + b cos²A + a²cos²A + b² sin²A

→ m² + n² = a²(sin²A + cos²A) + b²(sin²A + cos²A)

Since sin²A + cos²A = 1, hence

→ m² + n² = a² + b²

Hence required answer is m² + n².

Answered by amritaraj
1

Answer:

Step-by-step explanation:

Given

→ a cosA + b sinA = m

→ a sinA - b cosA = n

Solution

→ m² = (a cosA + b sinA)²

→ m² = a² cos²A + b sin²A + 2a cosA· b sinA

→ n² = a² sin²A + b² cos²A - 2 a cos·b sinA

On adding m² and n², 2 acosA·bsina cancel out.

→ m² + n² = a²sin²A + b cos²A + a²cos²A + b² sin²A

→ m² + n² = a²(sin²A + cos²A) + b²(sin²A + cos²A)

Since sin²A + cos²A = 1, hence

→ m² + n² = a² + b²

Hence required answer is m² + n².

Similar questions