a*cos o + b*sin o=m
a*sin o + b*cosec o=n
to prove....m² +n²= a²+b²
Answers
Answered by
2
Step-by-step explanation:
given, a.cosθ+b.sinθ = m
and a.sinθ - b.cosθ = n (please check your question)
consider, m² + n²
=> (a.cosθ+b.sinθ)² + (a.sinθ - b.cos-θ)²
=> (a².cos²θ+b².sin²θ +2a.cosθ.b.sinθ) + (a².sin²θ + b².cos²θ-2a.sinθ.b.cosθ)
=> a².cos²θ+b².sin²θ + a².sin²θ + b².cos²θ
=> a²(sin²θ+cos²θ) + b²(sin²θ+cos²θ)
=> a²+ b²
ie, m² + n² = a²+ b²
Hence proved
Similar questions