a cos theta minus B sin theta is equal to C prove that a sin theta minus B cos theta is equal to plus minus root a square + b square minus C square
Answers
Correct Question
If a sinØ + b cosØ = c then prove that a cosØ - b sinØ = ± √(a² + b² - c²)
Solution
a sinØ + b cosØ = c
Squaring on both sides
→ (a sinØ)² + (b cosØ)² = (c)²
→ a² sin²Ø + b² cos²Ø + 2ab sinØ cosØ = c² ...(eq 1)
Now,
a cosØ - b sinØ = ± √(a² + b² - c²)
Let us assume that a sinØ - b cosØ = x
So,
a sinØ - b cosØ = x
Again, do squaring on both sides
→ (a cosØ - b sinØ)² = (x)²
→ a² cos²Ø + b² sin²Ø - 2ab sinØ cosØ = x² ...(eq 2)
Add (eq 1) and (eq 2)
→ a² sin²Ø + b² cos²Ø + 2ab sinØ cosØ + a² cos²Ø + b² sin²Ø - 2ab sinØ cosØ = c² + x²
→ sin²Ø(a² + b²) + cos²Ø(a² + b²) = c² + x²
(a² + b²) is common on L.H.S. So,
→ [(a² + b²) (sin²Ø + cos²Ø)] = c² + x²
→ (a² + b²) (1) = c² + x²
→ a² + b² = c² + x²
→ a² + b² - c² = x²
→ √(a² + b² - c²) = x
Hence, proved
||✪✪ QUESTION ✪✪||
if asinθ + bcosθ = c , prove that , acosθ - bsinθ = ± √(a²+b²-c²)
|| ★★ FORMULA USED ★★ ||
- sin²θ + cos²θ = 1
- (a+b)² = a² + b² + 2ab
- (a-b)² = a² + b² - 2ab
|| ✰✰ ANSWER ✰✰ ||
Lets assume that,
→ asinθ + bcosθ = c as -------------- Equation (1)
and,
→ acosθ - bsinθ = x (Let) ------------ Equation (2) .
Squaring both sides of the Equation and than adding both of the Equation, we get,
→ (asinθ + bcosθ)² + (acosθ - bsinθ)² = c² + x²
Now, using (a+b)² and (a-b)² formula (Told above) , we get,
→ [ a²sin²θ + b²cos²θ + 2absinθcosθ ] + [ a²cos²θ + b²sin²θ - 2absinθcosθ ] = c² + x²
→ a²sin²θ + a²cos²θ + b²cos²θ + b²sin²θ + 2absinθcosθ - 2absinθcosθ = c² + x²
( 2absinθcosθ will be cancel now .)
→ a²(sin²θ + cos²θ) + b²(sin²θ + cos²θ) = c² + x²
Now, putting value of (sin²θ + cos²θ = 1) we get,
→ a² + b² = c² + x²
→ x² = a² + b² - c²
square - root both sides now,
→ x = ± √(a² + b² - c²)
Now, putting value of x From Equation (2), we can say that,
→ acosθ - bsinθ = ± √(a²+b²-c²)