a cos thita+b sin thita =m ,and a sin thita +b cos thita =n ,then show that : a^2 +b^2 =m^2 +n^2
Answers
Answered by
2
Answer:
Given,
a cosΦ + b sinΦ = m
a SinΦ + b cosΦ = n
To prove :- a² + b² = m² + n²
Squaring both sides we get,
a²cos²Φ + b²sin²Φ = m² ••••••• 1
a²sin²Φ + b²cos²Φ = n² ••••••• 2
Adding 1 & 2
m² + n² = a²cos²Φ + a²sin²Φ +
b²sin²Φ + b²cos²Φ
Taking a² and b² common in RHS we get,
m² + n² = a² ( sin²Φ + cos²Φ ) +
b² ( sin²Φ + cos²Φ )
m² + n² = a²(1) + b²(1)
[ Sin²Φ + Cos²Φ = 1 ]
Hence, a² + b² = m² + n²
LHS = RHS ( Hence proved )
PLEASE MARK AS BRAINLIEST IF YOU FOUND IT HELPFUL
Similar questions
Music,
5 months ago
Math,
5 months ago
Math,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago