Math, asked by 0001sundarkumar, 11 months ago

a
cos²0 sina
(1 – tan o) (sin 0 - cos 0)
=(1 + sin
cos )​

Attachments:

Answers

Answered by Sharad001
49

Question :-

Prove that

 \frac{ { \cos}^{2} \theta }{(1 -  \tan \theta)}  +  \frac{ { \sin}^{3}  \theta}{( \sin  \theta -  \cos \theta)}  = (1 +  \sin \theta \cos \theta ) \\

Io

Proof :-

→ We will try to show that left hand side is equal to right hand side .

Formula used :-

 \star \: \sf{  {a}^{3}  -  {b}^{ 3}  = (a - b) ( {a}^{2}  +  {b}^{2}   +  ab)} \:  \\  \\  \star \:  \: { \sin}^{2}  \theta +  { \cos}^{2}  \theta \:  = 1 \\  \\  \star  \:  \:  \tan \theta \:  =  \frac{ \sin \theta}{ \cos \theta \: }

Explanation :-

Taking left hand side ,

 \rightarrow\frac{ { \cos}^{2} \theta }{(1 -  \tan \theta)}  +  \frac{ { \sin}^{3}  \theta}{( \sin  \theta -  \cos \theta)} \\  \\  \rightarrow \: \frac{ { \cos}^{2} \theta }{(1 -   \frac{ \sin \theta}{ \cos \theta} )}  +  \frac{ { \sin}^{3}  \theta}{( \sin  \theta -  \cos \theta)} \:  \\  \\  \rightarrow \: \frac{ { \cos}^{2} \theta }{( \frac{ \cos \theta -  \sin \theta}{ \cos \theta} )}  +  \frac{ { \sin}^{3}  \theta}{( \sin  \theta -  \cos \theta)} \:  \\  \:  \\  \rightarrow \: \frac{ { \cos}^{3} \theta }{(  \cos \theta -  \sin \theta)}  +  \frac{ {\sin}^{3}  \theta}{( \sin  \theta -  \cos \theta)} \:  \\  \\ \text{ we \: can \: write \: it} \\  \\  \rightarrow \: \frac{ { \cos}^{3} \theta }{(  \cos \theta -  \sin \theta)}   -   \frac{ {\sin}^{3}  \theta}{( \cos  \theta -  \sin \theta)} \: \:  \\  \\  \rightarrow \:  \frac{ { \cos}^{3}  \theta -  { \sin}^{3}  \theta}{( \cos \theta \:  -  \sin \theta)}  \\  \\   \because \sf{  {a}^{3}  -  {b}^{ 3}  = (a - b)( {a}^{2}  +  {b}^{2}   +  ab)} \\  \therefore \\  \\  \rightarrow \:  \frac{( \cos \theta -  \sin \theta)( { \cos}^{2} \theta +  { \sin}^{2} \theta  +  \sin \theta \cos \theta  }{( \cos \theta \:  -  \sin \theta \: )}  \\  \\  \because \:  { \sin}^{2}  \theta +  { \cos}^{2}  \theta \:  = 1 \\   \therefore  \\  \rightarrow \: 1 +  \sin \theta \:  \cos \theta \:

Left hand side = right hand side

(LHS = RHS )

hence proved : )

___________________

#answerwithquality

#BAL

Similar questions