a cosB-C/2= (b+c) cosB+C/2
Answers
Answer:
Step-by-step explanation:
aCos(B-C/2) = (b+c) Cos(B+C/2)
=> b+c/a = Cos(B-C/2) / Cos(B+C/2)
we know the sine rule of triangle i.e.
a/SinA = b/SinB = c/SinC = k
=> a = kSinA, b = kSinB, c = kSinC.
Consider L.H.S,
b + c/a = kSinB + kSinC / kSinA
= SinB + SinC / SinA
= 2Sin(B+C/2)Cos(B-C/2)/2SinA/2CosA/2
-------------------------------------------------------------------------
we know that sum of all angles in triangle is 180°
=> A + B + C = 180°
=> B+C = 180 - A (Divide by 2 on both sides)
=> B+C/2 = 90 - A/2 ------ (1)
--------------------------------------------------------------
Substitute the (1) above in place of B+C/2,
= 2Sin(90 - A/2)Cos(B-C/2) / 2SinA/2CosA/2
= CosA/2Cos(B-C/2) / SinA/2CosA/2
= Cos(B-C/2) / SinA/2
//Substitute the (1) above in place of SinA/2,
= Cos(B-C/2) / Sin (90 - B+C/2)
= Cos(B-C/2)/Cos(B+C/2)
= R.H.S