a coseΦ + b sineΦ= c if α,β is the sollution of Φ then prove
sin(α+β)=2ab/(a^2 + b^2)
Answers
Answered by
2
Step-by-step explanation:
α,β)=
∣
∣
∣
∣
∣
∣
∣
∣
cosα
sinα
cos(α+β)
−sinα
cosα
−sin(α+β)
1
1
1
∣
∣
∣
∣
∣
∣
∣
∣
=cosα(cosα+sin(α+β))+sinα(sinα−cos(α+β))−(sinαsin(α+β)+cosαcos(α+β))
=1+sin(α+β−α)−cos(α+β−α)
=1+sinβ−cosβ
⇒ϕ(α,β) is independent of α.
∴f(300,200)=f(400,200) and f(100,200)=f(200,200)
Hence, options A and C.
Similar questions