Physics, asked by Sabika3184, 11 months ago

A covex and concave mirror each of focal length f are placed at a distance 4 f apart as shown in the fig. at what point on the principle axis of the two. mirror should a point source of light be placed for the raise of converge at the same point after being reflected first from the convex mirror and then from the concave mirror

Answers

Answered by aristocles
0

Answer:

Distance of object from convex mirror is

x = f + \sqrt3 f

Explanation:

let the distance from convex mirror is "x"

now the image formed at

\frac{1}{v} + \frac{1}{-x} = \frac{1}{f}

so we have

v = \frac{fx}{f + x}

now the object distance from concave mirror is given as

u = 4f + \frac{fx}{f + x}

now its image must form at

v = 4f - x

now by mirror formula

\frac{1}{4f - x} + \frac{1}{4f + \frac{fx}{f + x}} = \frac{1}{f}

\frac{f + x}{4f^2 + 4fx + fx} = \frac{1}{f} - \frac{1}{4f - x}

\frac{f + x}{4f^2 + 5fx} = \frac{3f - x}{f(4f - x)}

(4f - x)(f + x) = (4f + 5x)(3f - x)

4f^2 + 4fx - fx - x^2 = 12 f^2 - 4fx + 15 fx - 5x^2

4x^2 - 8fx - 8f^2 = 0

x^2 - 2fx - 2f^2 = 0

x = \frac{2f \pm \sqrt{4f^2 + 8f^2}}{2}

x = f + \sqrt3 f

#Learn

Topic : combination of mirror

https://brainly.in/question/1256087

Similar questions