Math, asked by Anonymous, 1 month ago

a cricketer hits a ball with velocity 25m/s at 60 above the horizontal
how far above the ground it passes over a fielder 50m from the
bat (assume the ball is struck very close to the ground)
a) 8.2 m b) 9m c) 11.6m d) 12.7m​

Answers

Answered by VεnusVεronίcα
34

Horizontal component of velocity :

 \sf \qquad\dashrightarrow v_{x} = 25 \: cos60 \degree

 \sf \qquad \dashrightarrow  v_{x} = 25 \: (0.5)

  \red{ \pmb{\sf \qquad \dashrightarrow  v_{x} = 12.5 \: m {s}^{ - 1} }}

 \:

Vertical component of velocity :

 \sf \qquad \dashrightarrow  v_{y} = 25 \: sin60 \degree

 \sf \qquad \dashrightarrow  v_{y} = 25 \:  (\dfrac{ \sqrt{3} }{2} )

 \red{ \pmb{ \qquad \sf \dashrightarrow  v_{y} = 12.5 \sqrt{3}  \: m {s}^{ - 1} } }

 \:

Time to cover 50m distance is t.

 \sf \qquad \dashrightarrow t =  \dfrac{d}{ v_{x} }

 \qquad \sf \dashrightarrow t =  \dfrac{50}{12.5}

 \red{ \pmb{ \qquad \sf \dashrightarrow  t = 4 \: secs}}

 \:

The vertical height y is given by :

 \sf \qquad \dashrightarrow y =  v_{y}t -  \dfrac{1}{2}  \: g {t}^{2}

 \sf \qquad \dashrightarrow y = (12.5 \sqrt{3} ) \: (4) \:  -  \dfrac{1}{2}  \: (9.8) \: (16)

 \sf \qquad \dashrightarrow y = (86.6) \:  -  \dfrac{1}{2}  \: (156.8)

 \qquad \dashrightarrow \sf y = 86.6 - 78.4

   \red{ \pmb{ \sf\qquad \dashrightarrow y = 8.2 \: m \:   \:  \:  \: \{0ption \: a \}{}}}

Attachments:
Similar questions