a cube +b cube +c cube when a+b+c=0and abc=25
Answers
Answered by
1
Answer:
a³+b³+c³=75
OR
a³+b³+c³=3(abc)
Step-by-step explanation:
a³+b³+c³
(a+b+c)³=a³+b³+c³+3(a+b)(b+c)(a+c)
=a³+b³+c³+3[(ab+ac+b²+bc)(a+c)]
=a³+b³+c³+3[a²b+a²c+ab²+abc+abc+ac²+b²c+bc²]
=a³+b³+c³+3a²b+3ab²+3ac²+3a²c+3bc²+3b²c+6abc
0=a³+b³+c³+6(25)+3a²b+3ab²+3ac²+3a²c+3bc²+3b²c
0=a³+b³+c³+150+3ab(a+b)+3bc(b+c)+3ac(a+c)
0=a³+b³+c³+150+3ab(-c)+3bc(-a)+3ac(-b)
0=a³+b³+c³+150-9abc
0=a³+b³+c³+6(25)-9(25)
0=a³+b³+c³-3(25)
0=a³+b³+c³-75
a³+b³+c³=75
OR
a³+b³+c³=3(abc)
- HOPE YOU GOT IT
- IF YES MARK MY ANSWER AS THE BRAINLIEST ANSWER
- AND GIVE ME A BIG HEART
Answered by
0
If a+b+c = 0 then
a cube + b cube + c cube = 3 abc
So ans is 3 * 25 = 75
You can see pic
Mark as brainliest
a cube + b cube + c cube = 3 abc
So ans is 3 * 25 = 75
You can see pic
Mark as brainliest
Attachments:
Similar questions