Physics, asked by sonu3543, 1 year ago

A cube having mass 5kg is placed on a weighing scale inside water.Find the reading of weighing scale​

Answers

Answered by sahildhande987
120

\huge{\underline{\sf{\red{Answer\leadsto \dfrac{5}{6} kg}}}}

____________________________________

Given:

Mass of Block = 5kg

\rho_s = Specific Gravity = 1.2

Density of Water = \rho_{water} = 10^3

____________________________________

Formula

  • \rho = \dfrac{Mass\:of\:solid }{Volume\:of\:Liquid }
  • Reading = \dfrac{Normal\:Reaction}{g}
  • Buoyant Force = V\rho_{water}g

___________________________________

Solution:

\large\star A Buoyant Force and a Normal Force is acting in upwards Direction on the block from below

\large\star Gravity=g acts on the block from above i.e mg

Making an FBD from the given Information_____In attachment

By this We get an Equation

 F_b + N=mg \\ \\  V\rho_{water}g + Normal\:Reaction=mg

Diving the Equation by g

 \dfrac{V\rho_{water}\cancel{g}}{\cancel{g}} + \dfrac{N}{g} = \dfrac{m\cancel{g}}{\cancel{g}} \\ \\ V\rho_{water} + \dfrac{N}{g} = m \\ \\ \dfrac{N}{g} = m-V\rho_{water}\large{\star}

From Formula above

\rho = \dfrac{m}{V} \\ \\ V = \dfrac{m}{\rho} = \dfrac{5}{1.2 \times 10^3}

Reading \leadsto \dfrac{N}{g} = 5 - \dfrac{5}{1.2 \times \cancel{10^3}} \times\cancel{ 10^3}  \\ \\ \implies 5\bigg(\dfrac{1.2-1}{1.2}\bigg) \\ \\ \implies 5\bigg(\dfrac{0.2}{1.2} \bigg) \\ \\ \implies 5\bigg(\dfrac{1}{6}\bigg) \\ \\ \huge{\leadsto}{\boxed{\dfrac{5}{6} kg}}

___________________________________

Attachments:
Answered by Anonymous
34

\huge\bold\star\red{Answer}\star

\huge{\underline{\sf{\purple{Answer\leadsto \dfrac{5}{6} kg}}}}

____________________________________

Given:

Mass of Block = 5kg

\rho_s = Specific Gravity = 1.2

Density of Water = \rho_{water} = 10^3

____________________________________

Formula

\rho = \dfrac{Mass\:of\:solid }{Volume\:of\:Liquid }

Reading = \dfrac{Normal\:Reaction}{g}

Buoyant Force = V\rho_{water}g

___________________________________

Solution:

\large\star A Buoyant Force and a Normal Force is acting in upwards Direction on the block from below

\large\star Gravity=g acts on the block from above i.e mg

Making an FBD from the given Information_____In attachment

By this We get an Equation

 F_b + N=mg \\ \\  V\rho_{water}g + Normal\:Reaction=mg

Diving the Equation by g

 \dfrac{V\rho_{water}\cancel{g}}{\cancel{g}} + \dfrac{N}{g} = \dfrac{m\cancel{g}}{\cancel{g}} \\ \\ V\rho_{water} + \dfrac{N}{g} = m \\ \\ \dfrac{N}{g} = m-V\rho_{water}\large{\star}

From Formula above

\rho = \dfrac{m}{V} \\ \\ V = \dfrac{m}{\rho} = \dfrac{5}{1.2 \times 10^3}

Reading \leadsto \dfrac{N}{g} = 5 - \dfrac{5}{1.2 \times \cancel{10^3}} \times\cancel{ 10^3}  \\ \\ \implies 5\bigg(\dfrac{1.2-1}{1.2}\bigg) \\ \\ \implies 5\bigg(\dfrac{0.2}{1.2} \bigg) \\ \\ \implies 5\bigg(\dfrac{1}{6}\bigg) \\ \\ \huge{\leadsto}{\boxed{\dfrac{5}{6} kg}}

___________________________________

Similar questions