Math, asked by hgfyduhbhj9150, 1 year ago

a cube in emilys closet where she stores her jewelry has a side length of 1 and 1/4, what is the volume of the cube?

Answers

Answered by SnowySecret72
46

Answer:1  \frac{61}{64} cubic feet

Explanation:

Given:The side(lenght) of the cube=1 1/4

To find:Volume of cube

Side of cube=1 1/4

We know that

Volume=side^3

{(1 \frac{1}{4} )}^{3}

{( \frac{5}{4}) }^{3}

 \frac{5 \times 5 \times 5}{4 \times 4 \times 4}

 \frac{125}{64}

1\frac{61}{64}

_________

Thus volume of the cube=

1\frac{61}{64} cubic feet

Answered by Blaezii
27

\mathfrak{\large{\underline{\underline{Answer:-}}}}

The Volume of the cube is \sf 1\;\dfrac{61}{64}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given that :

The side (lenght) of the cube = \sf 1 \dfrac{1}{4}

To Find :

The volume of the cube.

Solution :

We know that :

\boxed{\sf{Volume\;of\;the\;Cube\;=Side^3 }}

Here side = \sf 1 \dfrac{1}{4}

Put the given values :

\sf \longrightarrow {(1 \dfrac{1}{4} )}^{3}\\\\\sf \longrightarrow{(\dfrac{5}{4}) }^{3}\\\\\sf \longrightarrow\dfrac{5 \times 5 \times 5}{4 \times 4 \times 4}\\\\\sf \longrightarrow \dfrac{125}{64} \\\\ \sf \longrightarrow 1\dfrac{61}{64}

Hence,

It implies that the volume of Cube = \sf 1\;\dfrac{61}{64}

\rule{400}{2.5}

Extra Information :

Cube:

Cube is geometrical shape which has 6 faces, 12 edges, and 8 vertices.

Surface area :                  (Of Cube)

=> 6 × a²

Number of edges :

12

Number of vertices :

8

Number of faces :

6

Similar questions