A cube is cut with 3 straight cuts . Either horizontally or vertically . What is the percent increased in the total surface area of the cube.
xD bs bs krdiya maaf -;-
ab mt kro answer..!!
aisa kisi girl se mt bolna uska bhai ya bf tumko chhodega ni..xD ¯\_ಠ_ಠ_/¯manners lao aandhar apna
Answers
Explanation:
Question:-
A cube is cut with 3 straight cuts . Either horizontally or vertically . What is the percent increased in the total surface area of the cube
To Find:-
Find the percent increased in the total surface area of the cube.
Solution:-
First ,
We have to find the total surface area of a cube:-
\sf\dashrightarrow \: Area = 6 \times { Edge }^{ 2 }⇢Area=6×Edge
2
\sf\dashrightarrow \: Area = 6 \times { 9a }^{ 2 }⇢Area=6×9a
2
\sf\dashrightarrow \: Area = 54 { a }^{ 2 }⇢Area=54a
2
Now ,
We have to find T.S.A of three cuboid:-
\sf\dashrightarrow \: T.S.A = 3 \times 2( 3a \times a + a \times 3a + 3a \times 3a )⇢T.S.A=3×2(3a×a+a×3a+3a×3a)
\sf\dashrightarrow \: T.S.A = 6( 15 { a }^{ 2 } )⇢T.S.A=6(15a
2
)
\sf\dashrightarrow \: T.S.A = 90 { a }^{ 2 }⇢T.S.A=90a
2
Now ,
We have to find the percent increased in the total surface area of the cube:-
\sf\dashrightarrow \: Percent = \dfrac { Increased \: in \: area \times 100 } { Initial \: percent }⇢Percent=
Initialpercent
Increasedinarea×100
\sf\dashrightarrow \: Percent = \dfrac { 3600 { a }^{ 2 } } { 54 { a }^{ 2 } }⇢Percent=
54a
2
3600a
2
\sf\dashrightarrow \: Percent = 66.6⇢Percent=66.6
Hence ,
Percentage increased is 66.6
MAY IT HELPS
Answer:
vese duniya mai kesa lag raha hai