Math, asked by deepakbajaj9787, 1 year ago

A cube minus 27 b cube + 2 a square b minus 6 a b square

Answers

Answered by MaheswariS
8

\textbf{Given:}

a^3-27\,b^3+2\,a^2b-6\,ab^2

\textbf{To find:}

\text{Factors of $a^3-27\,b^3+2\,a^2b-6\,ab^2$}

\textbf{Solution:}

\text{Consider,}

a^3-27\,b^3+2\,a^2b-6\,ab^2

=a^3-(3b)^3+2\,a^2b-6\,ab^2

=a^3-(3b)^3+2ab(a-3b)

\text{Using the following identity}

\boxed{\bf\,x^3-y^3=(x-y)(x^2+xy+y^2)}

=(a-3b)(a^2+3\,ab+9b^2)+2ab(a-3b)

=(a-3b)[a^2+3\,ab+9b^2+2ab]

=(a-3b)(a^2+5\,ab+9b^2)

\therefore\textbf{The factors of $\bf\,a^3-27\,b^3+2\,a^2b-6\,ab^2$ are $\bf(a-3b)$ and $\bf(a^2+5\,ab+9b^2)$}

Find more:

x^2-(a-1/a)x+1 factorise the following

https://brainly.in/question/4301404

Factorise 16 a square minus 25 B square minus 8 A plus one

https://brainly.in/question/15127396

Similar questions
Math, 6 months ago