Math, asked by satvik78, 1 year ago

a cube minus one upon x minus 2 A + 2 upon 8​

Attachments:

Answers

Answered by Swarup1998
128
\boxed{\underline{\textsf{Identities :}}}

1.\:x^{3}-y^{3}=(x-y)(x^{2}+xy+y^{2})

2.\:x^{3}+y^{3}=(x+y)(x^{2}-xy+y^{2})

3.\:x^{2}-y^{2}=(x+y)(x-y)

4.\:x^{2}+y^{2}=(x+y)^{2}-2xy

5.\:(x+y)^{2}=x^{2}+2xy+y^{2}

6.\:(x-y)^{2}=x^{2}-2xy+y^{2}

\boxed{\underline{\textsf{Solution :}}}

\textsf{Now,}\:a^{3}-\frac{1}{a^{3}}-2a+\frac{2}{a}

=(a^{3}-\frac{1}{a^{3}})-(2a-\frac{2}{a})

=\small{(a-\frac{1}{a})\{a^{2}+(a*\frac{1}{a})+\frac{1}{a^{2}}\}-2(a-\frac{1}{a})}

=(a-\frac{1}{a})(a^{2}+1+\frac{1}{a^{2}})-2(a-\frac{1}{a})

=(a-\frac{1}{a})(a^{2}+1+\frac{1}{a^{2}}-2)

=(a-\frac{1}{a})(a^{2}+\frac{1}{a^{2}}-1)

\textsf{which is the required factorization.}
Answered by Atulya9
10

Answer:

(a-1/a)(a²-1+1/a²)

Step-by-step explanation:

Hope it will helps you

Attachments:
Similar questions