. A cube of metal with length of edge 8 cm is melted to make smaller cubes of edge 2 cm. How many small cubes can be thus made?
I want it fast plz answer.
Answers
Given that,
A cube of metal with length of edge 8 cm is melted to make smaller cubes of edge 2 cm.
Let assume that number of cubes of edge 2 cm be n.
We know, When any object is melted and recast in to other object, then volume of first object is equals to volume of other object.
Additional Information :-
Step-by-step explanation:
\large\underline{\sf{Solution-}}
Solution−
Given that,
A cube of metal with length of edge 8 cm is melted to make smaller cubes of edge 2 cm.
Let assume that number of cubes of edge 2 cm be n.
We know, When any object is melted and recast in to other object, then volume of first object is equals to volume of other object.
\begin{gathered}\rm \: Volume_{(Cube \: of \:edge \: 8 \: cm )} = n \times Volume_{(Cube \: of \:edge \: 2\: cm )} \\ \end{gathered}
Volume
(Cubeofedge8cm)
=n×Volume
(Cubeofedge2cm)
\begin{gathered}\rm \: {8}^{3} = n \times {(2)}^{3} \\ \end{gathered}
8
3
=n×(2)
3
\begin{gathered}\rm \: 8 \times 8 \times 8 = n \times 8 \\ \end{gathered}
8×8×8=n×8
\begin{gathered}\rm\implies \:n \: = \: 64 \\ \end{gathered}
⟹n=64
\begin{gathered}\rm\implies \:\boxed{ \rm{ \: Number_{(Cube \: of \:edge \: 2 \: cm )}\: = \: 64 \: \: }} \\ \end{gathered}
⟹
Number
(Cubeofedge2cm)
=64
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★CSA
(cylinder)
=2πrh
★Volume
(cylinder)
=πr
2
h
★TSA
(cylinder)
=2πr(r+h)
★CSA
(cone)
=πrl
★TSA
(cone)
=πr(l+r)
★Volume
(sphere)
=
3
4
πr
3
★Volume
(cube)
=(side)
3
★CSA
(cube)
=4(side)
2
★TSA
(cube)
=6(side)
2
★Volume
(cuboid)
=lbh
★CSA
(cuboid)
=2(l+b)h
★TSA
(cuboid)
=2(lb+bh+hl)