Math, asked by adityabirla39, 6 months ago

A cube with side of 6cm.
then find
(1) T.S.A
(2) L.S.A
(3) Volume​

Answers

Answered by kanaytanavde3498
0

Answer:

Step-by-step explanation:

1) TSA= 6a^2

= 6(36)= 216 cm^2

2) LSA = 4a^2

4(36)= 144 cm^2

3) vol= a^3

= 6^3= 216cm^2

Answered by Anonymous
62

Given

  • Side of the cube = 6cm

To find

  • Total surface area
  • Lateral surface area
  • Volume

Solution

  • As it is given in the question that side of the cube is 6cm.
  • Let the side of the cube be a.

★ Finding Total surface area

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{T.S.A_{(Cube)} = 6a^2{\bigstar}}}}

\large{\tt{\longmapsto{T.S.A = 6 \times (6)^2}}}

\large{\tt{\longmapsto{T.S.A = 6 \times 36}}}

\large{\tt{\longmapsto{T.S.A = 216cm^2}}}

Finding Lateral surface area

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{L.S.A_{(Cube)} = 4a^2{\bigstar}}}}

\large{\tt{\longmapsto{L.S.A = 4 \times (6)^2 }}}

\large{\tt{\longmapsto{L.S.A = 4 \times 36}}}

\large{\tt{\longmapsto{L.S.A = 144cm^2}}}

Finding Volume

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{Volume_{(Cube)} = a^3{\bigstar}}}}

\large{\tt{\longmapsto{Volume = (6)^3}}}

\large{\tt{\longmapsto{Volume = 6 \times 6 \times 6}}}

\large{\tt{\longmapsto{Volume = 216cm^3}}}

Hence,

  • Total surface area = 216 cm²
  • Lateral surface area = 144 cm²
  • Volume = 216 cm³

━━━━━━━━━━━━━━━━━━━━━━

Similar questions