Math, asked by aggarwaleshan8289, 11 months ago

A cubic polynomial whose zeros are1,3,-2

Answers

Answered by Sudhir1188
8

ANSWER:

  • CUBIC POLYNOMIAL:
  • p(x) \:  = x {}^{3}  - 2x {}^{2}  - 5x + 6

GIVEN:

 \alpha \:  = 1 \\  \beta \:  = 3 \\  \gamma \:  = ( - 2)

TO FIND:

  • A cubic polynomial having zeros 1, 3, (-2)

SOLUTION:

  • Standard form of cubic polynomial with zeros:

 \implies \: x {}^{3}  - ( \alpha +  \beta   +  \gamma )x {}^{2}  + ( \alpha  \beta +  \beta \gamma \:  +  \gamma \alpha)x -  \alpha  \beta \gamma

Now finding the values:

 \implies \:  \alpha \:  +  \beta \:  +  \gamma \:  =   1 + 3 - 2 \\  \implies \:  \alpha \:  +  \beta \:  +  \gamma \:  = 2 \\   \\  \implies \:  \alpha \beta+  \beta  \gamma+  \gamma \alpha = (1 \times 3) + (3 \times ( - 2)) + ( - 2) \times 1 \\  \implies \:  \alpha \beta \:  +  \beta \gamma  +  \gamma \alpha  = 3 - 6 - 2 \\  \implies \:  \alpha \beta  +  \beta \gamma  +  \gamma \alpha  = \:  - 5 \\  \\  \implies \:  \alpha \:   \beta \:    \gamma \:  = 1 \times 3 \times ( - 2) \\  \implies \:  \alpha \:    \beta \:    \gamma \:  = - 6

Putting the values in the standard form of cubic polynomial.

p(x) \:  = x {}^{3}  - 2x {}^{2}  - 5x + 6

NOTE:

Some important formulas:

  • Standard form of cubic polynomial

 \implies \: x {}^{3}  - ( \alpha +  \beta   +  \gamma )x {}^{2}  + ( \alpha  \beta +  \beta \gamma \:  +  \gamma \alpha)x -  \alpha  \beta \gamma

  • Standard form of quadratic polynomial

 \implies \: x {}^{2}  - ( \alpha \:  +  \beta)x +  \alpha \beta

Similar questions