Math, asked by pokexe2991, 5 months ago

A cubical box has each edge 10 cm and another cuboidal box is 12.5cm long, 10 cm wide and 8 cm high. Which box has the smaller total surface area and by how much?

Answers

Answered by Anonymous
6

\large{\underline{\underline{\textsf{\maltese\:{\red{Given}}}}}}

\sf{Side\: of\: a\: cubical\: box = 10cm}

\sf{Length, \:(l) \:of \:cuboidal\: box = 12.5 cm}

\sf{Breadth, \:(b) \:of \:cuboidal \:box = 10cm}

\sf{Height, (h) \:of \:cuboidal \:box = 8 cm}

\large{\underline{\underline{\textsf{\maltese\:{\red{To\: Find}}}}}}

\sf{Which\: box\: has\: the\: smaller\: total\: surface} \sf{area \:and \:by \:how\:much\:?}

\large{\underline{\underline{\textsf{\maltese\:{\red{Solution}}}}}}

\sf{The \:total\: surface\: area\: of \:the\: cubical\: box}

\sf{= 6(side)^2 }

\sf{= 6(10 \:cm)^2}

\sf{= 600\: cm^2}

\sf{Total \:surface\: area\: of \:cuboidal \:box}

\sf{= 2[lh+bh+lb]}

\sf{= [2(12.5×8+10×8+12.5×100)]}

\sf{= 610\:cm^2}

\underline{\underline{\textsf{Difference:}}}

\sf{Total \:surface \:area \:of \:cuboidal \:box – Total \:surface\: area\: of \:cubical \:box}

\sf{=610\:cm^2–600cm^2 }

\sf{= 10\: cm^2}

\sf{Therefore,\: the\: total\: surface\: area \:of\: the} \sf{cubical\:box\: is\: smaller \:than\: that \:of\: the} \sf{cuboidal\:box\:by \:10cm^2}

Answered by Anonymous
3

area of cubical box

≈6l²

=600 cm²

area of cuboidal box

=2(hw+hl+lw)

=2(80cm²+100cm²+125cm²)

=2(305cm²)

=610cm² ans...

610-600=10cm²

Similar questions