Math, asked by dreamgirl80, 7 months ago

a cubical box has each edge 10cm and another cuboidal box is 12.5cm long 10cm wide and 8cm high which box has the smaller total surface area and by how much ​

Answers

Answered by AmanKumarV7
9

\sf\large{\underline{\underline{\red{Solution:-}}}}

\sf{\orange{(i) \:Lateral \:surface\: area \:of \:cubical \:box}}\sf{= 4a^2 = 4 \times 102 = 400 cm^2}

\sf{Lateral \:surface \:area\: of \:cuboidal \:box = 2h\: (l + b)}

\sf{ = 2 \times 8\:(12.5 +10) = 16 \times 22.5 = 360 cm^2}

\sf{Thus, \:lateral \:surface\: area\: of \:cubical\: box\: is\: greater \:by:-}

\sf{(400 cm^2- 360 cm^2)}

\sf{\fbox{\color{red}{=40\:cm^2}}}

\sf{\orange{(ii)\: Total\: surface \:area\: of \:cubical\: box }}

\sf{= 6a^2 = 6 x 102 cm^2 = 600 cm^2}

\sf{Total \:surface \:area \:of\: cuboidal \:box = 2\: (lb + bh + hl)}

\sf{= 2\:(12.5 \times 10 + 10 \times 8 + 8 \times 12.5)}

\sf{= 2\:(125 + 80 + 100)  = 2 x 305\:cm^2  = 610 \:cm^2}

\sf{Thus,\: total\: surface \:area\: of\: cuboidal\: box\: is\: greater }\sf{by \:(610 - 600) \:cm^2}

\sf{\fbox{\color{red}{= 10\: cm^2}}}

Similar questions