Math, asked by harshitdas987, 2 months ago

A cubical box has each edge 5cm and another cuboidal box is 12.5 cm × 10 cm × 8 cm then which box has the greater lateral surfacearea and by how much?​

Answers

Answered by XxItzAnvayaXx
3

FINAL ANSWER:-

cuboid have larger lateral surface area by 310cm^{2}

GIVEN:-

  • cube (s) = 5\:cm
  • dimensions \:of \:cuboid \:\:l=12.5cm\\b=10cm\\h=8cm

FORMULAS USED:-

  • CSA\:of\:cuboid=2(lb+bh)
  • CSA\:of\:cube=4s^{2}\\

TO FIND:-

which box has the greater lateral surface area and by how much

SOLUTION:-

CSA\:of\:cuboid=2(lb+bh)

=2(12.5*10 + 1 0 *8 ) \\=2(125+80)\\=2(205)\\=410cm^{2}

CSA\:of\:cube=4s^{2}\\

=4(5)^{2}\\=4(25)\\=100cm^{2}

410>100\\CSA\:of\:cuboid>CSA\:of\:cube

so

=410-100\\=310cm^{2}

hence cuboid have larger lateral surface area by 310cm^{2}

⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔

SOME IMPORTANT FORMULAS:-

TSA\:of\:cylinder=2\pi rh +2\pi r^{2}\\TSA\:of\:hemisphere=3\pi r^{2}\\TSA\:of\:sphere=4\pi r^{2}\\TSA\:of\:cone=\pi r(r+l)\:\:or \:\:\pi rl + \pi r^{2}\\TSA\:of\:cube=6s^{2}\\TSA\:of\:cuboid=2(lb+lh+bh)\\\\CSA\:of\:cylinder=2\pi rh\\CSA\:of\:hemisphere=2\pi r^{2}\\CSA\:of\:sphere=4\pi r^{2} (same\:as\:TSA\:of\:sphere)\\CSA\:of\:cone=\pi rl\\CSA\:of\:cube=4s^{2}\\CSA\:of\:cuboid=2(lb+bh)

Answered by queen17182004
0

XaItzAnvayaXx ne accha answer diya hai use brainlist bana do aur use follow kar lo

Similar questions