Math, asked by hali1808, 4 months ago

A cubical tank with an edge length of 40 cm is filled with four 5.89 letter of water. How much more water is needed to fill the tank completely? Give your answer in litre. Chapter volume class 5th

Answers

Answered by IdyllicAurora
116

Answer :-

 \: \\ \: \qquad \boxed{\boxed{\rm{\mapsto \: \: \: Firstly \: let's \: understand \: the \: concept \: used}}}

Here the concept of relation between volume units has been used. We know that water(in litres) present to fill the tank completely is the volume of the tank. If we find out the Volume of the tank in litres and then subtract it from the given amount of water, we can find out the remaining water.

_______________________________________________

Formula Used :-

 \: \\ \: \large{\boxed{\boxed{\sf{Volume \: of \: Cube \: = \: \bf{(Side)^{3}}}}}}

 \: \\ \: \large{\boxed{\boxed{\sf{1000 \: \: cm^{3} \: = \: \bf{1 \: \: Litre}}}}}

 \: \\ \: \large{\boxed{\boxed{\sf{Remaining \: water \: = \: \bf{Volume \: of \: tank_{(in \: litres) } \: - \: Water \: present \: in \: tank}}}}}

_______________________________________________

Question :-

A cubical tank with an edge length of 40 cm is filled with four 5.89 letter of water. How much more water is needed to fill the tank completely? Give your answer in litre.

_______________________________________________

Solution :-

» Length of edge of cubical = 40 cm

Since, all edges of cube are equal. Then uts dimensions will be 40 × 40 × 40.

» Capacity of water present in tank = 5.89 Litres

_______________________________________________

Then according to the question :-

~ Volume of Cubical Tank =

 \: \\ \qquad \: \large{\sf{\Longrightarrow \: \: \: Volume \: of \: Cube \: = \: \bf{(Side)^{3}}}}

 \: \\ \qquad \large{\sf{\Longrightarrow \: \: \: Volume \: of \: Cubical \: tank \: = \: \bf{(40 \: \: cm)^{3}}}}

 \: \\ \qquad \large{\sf{\Longrightarrow \: \: \: Volume \: of \: Cubical \: tank \: = \: \bf{64000 \: \: cm^{3}}}}

 \: \\ \large{\boxed{\boxed{\tt{Volume \; of \; Tank \; = \; \bf{64000 \; cm^{3}}}}}}

_______________________________________________

 \: \\ \qquad  \: \large{\sf{\Longrightarrow \: \: \: 1000 \: \: cm^{3} \: = \: \bf{1 \: \: Litre}}}

 \: \\ \qquad  \: \large{\sf{\Longrightarrow \: \: \: 64000 \: \: cm^{3} \: = \: \bf{\dfrac{64000}{1000} \: Litres \: = \: \underline{64 \: \: Litres}}}}

_______________________________________________

~ Capacity of water needed to fill the

tank :-

 \: \\ \qquad \: \large{\sf{\Longrightarrow \: \: \: Remaining \: water \: = \: \bf{Volume \: of \: tank_{(in \: litres) } \: - \: Water \: present \: in \: tank}}}

 \: \\\: \large{\sf{\Longrightarrow \: \: \: Remaining \: water \: = \: \bf{64000 \;L \: - \: 5.89 \; L \: \: = \: \: \underline{58.11 \: \: Litres}}}}

 \: \large{\boxed{\boxed{\tt{Capacity \; of \; water \; to \; fill \; the \; Tank \; = \; \bf{58.11 \; Litres}}}}}

 \: \\ \large{\underline{\underline{\sf{\mapsto \: \: Thus, \: amount \: of \: water \: required \: to \: fill \: the \: tank \: is \: \: \boxed{\bf{58.11 \: \: Litres}}}}}}

_______________________________________________

 \: \\ \qquad \large{\underbrace{\sf{\leadsto \: \: Aid \: to \: Memory \: :-}}}

Volume of Cuboid = Length × Breadth × Height

Volume of Cylinder = πr²h

Volume of Cone = ⅓ × πr²h

Volume of Hemisphere = ⅔ × πr³

TSA of Cube = 6 × (Side)²

TSA of Cylinder = 2πrh + 2πr²


Anonymous: Good answer :)
Glorious31: Great explanation !
Answered by EliteSoul
71

Given :

A cubical tank with an edge length of 40 cm is filled with four 5.89 letter of water.

To find :

How much more water is needed to fill the tank completely.

Solution :

Given, edge of cubical tank = 40 cm

⇒ Edge length = (40/100) m

⇒  Edge length = 0.4 m

Now we know,

⇒  Volume of cube = Side³

⇒  Volume of tank = (0.4)³

⇒  Volume of tank = 0.064 m³

⇒  Volume of tank = (0.064 * 1000) l

⇒  Volume of tank = 64 l

Now water filled = 5.89 l

So water needed :

⇒  Water needed = (64 - 5.89) l

⇒  Water needed = 58.11 l

Therefore,

58.11 liters of water needed to fill it completely.

Similar questions