A cuboid 72 cm in length, 24 cm in breadth and 64 cm in height. It is melted and recast into a single cube.
Find the edge of the cube.
Answers
Answer:
i think this is the answer bro
Step-by-step explanation:
Here, l = 12 cm, b = 8 cm, h = 4.5 cm
Volume of the cuboid = l×b×h
=(12×8×4.5) cm3= 432 cm3
Total Surface area = 2(lb + lh+ bh)
=2(12×8 + 12×4.5 +8×4.5) cm2=2(96 +54 + 36) cm2=2× 186 cm2=372 cm 2
Lateral surface area = 2(l+b)×h
=[2(12+8)×4.5] cm2=[2(20)×4.5] cm2=40×4.5 cm2=180 cm2
(ii)
Here, l = 26 m; b = 14 m; h =6.5 m
Volume of the cuboid = l×b×h
=(26×14×6.5)m3=2366 m3
Total surface area = 2(lb + lh+ bh)
=2(26×14+26×6.5+6.5×14) m2=2(364+169+91) m2=2×624 m2=1248 m2
Lateral surface area = 2(l+b)×h
=[2(26+14)×6.5] m2=[2×40×6.5] m2=520 m2
(iii)
Here, l = 15 m; b = 6 m; h = 5 dm = 0.5 m
Volume of the cuboid = l×b×h
=(15×6×0.5) m3=45 m3
Total surface area = 2(lb + lh+ bh)
=2(15×6+15×0.5+6×0.5) m2=2(90+7.5 +3) m2=2×100.5 m2= 201m2
Lateral surface area = 2(l+b)×h
=[2(15+6)×0.5] m2=[2×21×0.5] m2=21 m2
(iv)
Here, l = 24 m; b = 25 cm = 0.25 m; h =6 m
Volume of the cuboid = l×b×h
=(24×0.25×6) m3=36 m3
Total Surface area = 2(lb + lh+ bh)
=2(24×0.25 +24×6 +0.25×6) m2=2(6+144 + 1.5) m2=2×151.5 m2=303 m2
Lateral surface area = 2(l+b)×h
=[2(24+0.25)×6] m2=[2×24.25×6] m2=291 m2