Math, asked by manitgm, 1 year ago

A cuboid of dimensions 60cm×54cm×30cm.How many small cube with side 6cm can be placed in a given cuboid?

Answers

Answered by Missbrainy
13
Hi there!!

here's your answer:

Given :
l = 60cm
b = 54 cm
h = 30 cm
side of cube = 6 cm

To find:
No. of cube that can be fit into cuboid

Solution:

No. of cubes = Volume of cuboid / volume of cube

let the side of cube be 'a'

= l × b × h / a × a × a
= 60 × 54 × 30 / 6 × 6 × 6
= 10 × 9 × 5
= 450

Therefore 450 cubes can fit into cuboid.

hope this helps ☺️

manitgm: Answer me for next question
Missbrainy: which next question?
Answered by shaktisrivastava1234
15

 \Huge \underline  \red{{\fbox{Answer}}}

 \large \underline{ \underline {\red {\frak{Given::}}}}

 \sf \mapsto{Dimension \: of \: cuboid  \: is  \: 60cm \times 54cm \times 30cm.}

 \sf  \mapsto{Side  \: of  \: small  \: cube \:  is  \: 6cm.}

 \large \underline{ \underline {\red {\frak{To \:  find::}}}}

 \sf \leadsto{No. \: of \:  small  \: cube \:  placed \:  in \: large \:  cuboid.}

 \large \underline{ \underline {\red {\frak{Formula \:  required::}}}}

  {\pink{\star}} \underline{\boxed{\bf{Volume  \: of \:  cuboid=lbh }}}  {\pink{ \star}}

  {\pink{\star}} \underline{\boxed{\bf{Volume  \: of \:  cube={l}^3 }}}  {\pink{ \star}}

  {\pink{\star}} \underline{\boxed{\bf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid= \frac{Volume \:  of \:  large \:  cuboid}{ Volume  \: of  \: small  \: cube}  }}}  {\pink{ \star}}

 \large \underline{ \underline {\red {\frak{According \:  to  \: Question::}}}}

{ \implies{\sf{Volume \: of \:  cuboid=lbh }}}

{ \implies{\sf{Volume  \: of \:  cuboid=60cm×54cm×30cm }}}

{ \implies{\sf{Volume  \: of \:  cuboid=97,200 {cm}^{3} }}}

\implies{\sf{Volume \: of \:  cube={l}^{3} }}

\implies{\sf{Volume  \: of \:  cube={(6)}^{3}  }}

\implies{\sf{Volume  \: of \:  cube=6cm  \times6cm\times6cm}}

\implies{\sf{Volume  \: of \:  cube=216{cm}^{3}  }}

{ \implies{\sf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid= \frac{Volume \:  of \:  large \:  cuboid}{Volume  \: of  \: small  \: cube}  }}}

{ \implies{\sf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid= \frac{97,200 {cm}^{3} }{216 {cm}^{3} }  }}}

{ \implies{\sf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid=  \cancel{\frac{97,200 {cm}^{3} }{216 {cm}^{3} }}  = 450cubes}}}

 \large \underline{ \underline {\red {\frak{Know \:  more::}}}}

 \boxed{ \begin{array}{|l|l| } \hline \sf T.S.A. \:  of  \: cuboid& \sf2(lb + bh + hl) \\  \hline   \sf L. S. A.  \: of \: cuboid& \sf2h(l + b) \\  \hline \sf Diagonal \:  of \:  cuboid&   \sf\sqrt{ {l}^{2} +  {b}^{2} +  {h}^{2}} \\  \hline \sf T.S.A. \:  of  \: cube& \sf 6( {l}^{2} )  \\  \hline \sf L. S. A.  \: of \: cube& \sf4( {l}^{2} ) \\  \hline\sf Diagonal \:  of \:  cube&  \sf\sqrt{3}l \\  \end{array}}

 \large \underline{ \underline {\red {\frak{Note::}}}}

 \sf{Here  \: we \:  use \:  to  \:  {\bf T. S. A.}, { \bf L. S. A.} ,{ \bf l}, { \bf b}  \: and  \: { \bf h}}

 \sf{to  \: represent \:  {\bf total  \: surface \:  area}, {\bf lateral  \: surface \: area}, {\bf length},}

 \sf{ {\bf breadth} \:  and   \: {\bf{height}}  \: respectively. }

Similar questions