Math, asked by tunishka35, 5 months ago

A cuboid of dimensions 60cm x 54cm x 30cm. How many small cubes with side 6cm can be placed in the given cuboid.​

Answers

Answered by SuitableBoy
54

{\huge{\underline{\underline{\rm{Question:-}}}}}

Q) A Cuboid of dimensions 60 cm × 54 cm × 30 cm . How many small cubes with side 6 cm can be placed in the given Cuboid .

 \\

{\huge{\underline{\underline{\rm{Answer\checkmark}}}}}

 \\

Given :

  • Dimensions of Cuboid = 60 cm × 54 cm × 30 cm
  • Edge of cube = 6 cm

 \\

To Find :

  • How many such cubes can be placed in the Cuboid .

 \\

Solution :

We know ,

  • Length (Cuboid) = 60 cm
  • Breadth (Cuboid) = 54 cm
  • Height (Cuboid) = 30 cm

So ,

Using the Formula ↓

  \underline{ \sf \: volume \: of \: a \: cuboid = length \times breadth \times height}

Here ,

 \underline{ \boxed{ \rm \: volume_{cuboid} = 60 \times 54 \times 30 \:  {cm}^{3} }}

And ,

Using the Formula :

 \underline{ \sf \: volume \: of \: a \: cube =  {edge}^{3} }

Here ,

 \underline{ \boxed{ \rm \: volume _{cube} =  {6}^{3}  = 6 \times 6 \times 6 \:  {cm}^{3} }}

Now , We know that :

 \rm \: the \: no. \: of \: cubes \: that \: can \: be \: placed =  \frac{volume _{cuboid} }{volume _{cube} }  \\

 \mapsto \rm \: no. \: of \: cubes =  \frac{  \cancel{60} \times  \cancel{54} \times  \cancel{30} \:  \cancel {cm}^{3} }{ \cancel6 \times  \cancel6 \times  \cancel6 \:  \cancel {cm}^{3} }  \\

 \mapsto \rm \: no. \: of \: cubes = 10 \times 9 \times 5

 \large \mapsto \pink{ \boxed {\purple{{ \sf \: no. \: of \: cubes = 450}}}}

So ,

450 such cubes can be placed in the Cuboid .

 \\

_________________________

 \\

Some Important Formulas :

• Volume of Cuboid = Length×Breadth×Height

• Volume of Cube = Side³

• TSA of Cuboid = 2(LB + BH + LH)

• TSA of Cube = 6(side)²

• CSA of Cuboid = 2(L+B)×H

• CSA of Cube = 4(side)²

Answered by shaktisrivastava1234
11

 \Huge \underline  \red{{\fbox{Answer}}}

 \large \underline{ \underline {\red {\frak{Given::}}}}

 \sf \mapsto{Dimension \: of \: cuboid  \: is  \: 60cm \times 54cm \times 30cm.}

 \sf  \mapsto{Side  \: of  \: small  \: cube \:  is  \: 6cm.}

 \large \underline{ \underline {\red {\frak{To \:  find::}}}}

 \sf \leadsto{No. \: of \:  small  \: cube \:  placed \:  in \: large \:  cuboid.}

 \large \underline{ \underline {\red {\frak{Formula \:  required::}}}}

  {\pink{\star}} \underline{\boxed{\bf{Volume  \: of \:  cuboid=lbh }}}  {\pink{ \star}}

  {\pink{\star}} \underline{\boxed{\bf{Volume  \: of \:  cube={l}^3 }}}  {\pink{ \star}}

  {\pink{\star}} \underline{\boxed{\bf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid= \frac{Volume \:  of \:  large \:  cuboid}{ Volume  \: of  \: small  \: cube}  }}}  {\pink{ \star}}

 \large \underline{ \underline {\red {\frak{According \:  to  \: Question::}}}}

{ \implies{\sf{Volume \: of \:  cuboid=lbh }}}

{ \implies{\sf{Volume  \: of \:  cuboid=60cm×54cm×30cm }}}

{ \implies{\sf{Volume  \: of \:  cuboid=97,200 {cm}^{3} }}}

\implies{\sf{Volume \: of \:  cube={l}^{3} }}

\implies{\sf{Volume  \: of \:  cube={(6)}^{3}  }}

\implies{\sf{Volume  \: of \:  cube=6cm \times6cm\times6cm}}

\implies{\sf{Volume  \: of \:  cube=216{cm}^{3}  }}

{ \implies{\sf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid= \frac{Volume \:  of \:  large \:  cuboid}{Volume  \: of  \: small  \: cube}  }}}

{ \implies{\sf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid= \frac{97,200 {cm}^{3} }{216 {cm}^{3} }  }}}

{ \implies{\sf{No. \:  of  \: small  \: cubes  \: placed  \: in  \: large  \: cuboid=  \cancel{\frac{97,200 {cm}^{3} }{216 {cm}^{3} }}  = 450cubes}}}

 \large \underline{ \underline {\red {\frak{Know \:  more::}}}}

 \boxed{ \begin{array}{|l|l| } \hline \sf T.S.A. \:  of  \: cuboid& \sf2(lb + bh + hl) \\  \hline   \sf L. S. A.  \: of \: cuboid& \sf2h(l + b) \\  \hline \sf Diagonal \:  of \:  cuboid&   \sf\sqrt{ {l}^{2} +  {b}^{2} +  {h}^{2}} \\  \hline \sf T.S.A. \:  of  \: cube& \sf 6( {l}^{2} )  \\  \hline \sf L. S. A.  \: of \: cube& \sf4( {l}^{2} ) \\  \hline\sf Diagonal \:  of \:  cube&  \sf\sqrt{3}l \\  \end{array}}

 \large \underline{ \underline {\red {\frak{Note::}}}}

 \sf{Here  \: we \:  use \:  to  \:  {\bf T. S. A.}, { \bf L. S. A.} ,{ \bf l}, { \bf b}  \: and  \: { \bf h}}

 \sf{to  \: represent \:  {\bf total  \: surface \:  area}, {\bf lateral  \: surface \: area}, {\bf length},}

 \sf{ {\bf breadth} \:  and   \: {\bf{height}}  \: respectively. }

Similar questions