Math, asked by tanusaha141, 4 months ago

a cuboidal block of icecream 12cm long 8cm broad and 6cm high.how many cuboidal pieces measuring 2 cm long 2cm broad and 3cm high can be cut from the block​

Answers

Answered by Eutuxia
6

Before, finding the answer. Let's find out on how we can find the answer.

  • First, we must find the volume of Cuboidal block by the formula of

\boxed{\green \star \sf \: Volume \: of \: Cuboid = l \times b \times h}

  • Then, we must find the volume of Cuboid piece by the same formula of  

\boxed{\green \star \sf \: Volume \: of \: Cuboid = l \times b \times h}

  • Now, we must divide volume of cuboidal block by the volume of cuboid piece :

\sf \dfrac{volume\: of\: cuboidal\: block}{volume \: of\: cuboidal\: piece}

________________________

Given :

  • Dimensions of Cuboidal Block = 12 cm, 8 cm, 6 cm.
  • Dimensions of Cuboidal Block = 2 cm, 2 cm, 3 cm

To find :

  • how many can be cut from the block​

Solution :

\sf Volume \: of \: Cuboid \: Bock ={ l \times b \times h}

                                   = 12 × 8 × 6 cm³

                                   =  576 cm³

Hence, the Volume of Cuboid Block is 576 cm³.

-------------

Volume of Cuboid Piece = l × b × h

                                         = 2 × 2 × 3 cm³

                                         = 12 cm³

Hence,  the Volume of Piece is 12 cm³

---------------

\sf can\: be \: cut = \dfrac{volume\: of\: cuboidal\: block}{volume \: of\: cuboidal\: piece}

\sf = \dfrac{576}{12}

\sf = 48

Hence, 48 of them can be cut.

Similar questions