Physics, asked by poojatomar3717, 11 months ago

A current in a wire is given by the equation, . I=2t^(2)-3t+1, the charge through cross section of : wire in time interval t=3s to t=5s is

Answers

Answered by Anonymous
11

\huge \underline {\underline{ \mathfrak{ \green{Ans}wer \colon}}}

I = 2t² - 3t + 1

As we know that :

\large{\boxed{\sf{I \: = \: \dfrac{dQ}{dt}}}} \\ \\ \implies {\sf{dQ \: = \: I dt}} \\ \\ \implies {\sf{dQ \: = \: (2t^2 \: - \: 3t \: + \: 1)dt}} \\ \\ \implies {\sf{\int dQ \: = \: \int (2t^2 \: - \: 3t \: + \: 1)dt}} \\ \\ \implies \displaystyle {\sf{Q = \int_{3}^{5} \: (2 t^{2} \: - \:  3t \: + \: 1)dt}} \\ \\ \implies {\sf{Q \: = \: \bigg[ \dfrac{2}{3} {t}^{3} \:  - \: \dfrac{3}{2} {t}^{2} + t \bigg ]_{3}^{5}}} \\ \\ \implies {\sf{Q \: = \: \big[ \dfrac{2}{3} \: \times \:  98 \big] \: - \:  \big [ \frac{3}{2} \: \times \:  16 \big] \:  + \:  2}} \\ \\ \implies {\sf{Q  \: = \: 65.33 \: - \: 24 \: + \:  2}} \\ \\ \implies {\sf{Q \: = \: 65.33 \: - \: 22}} \\ \\ \implies {\sf{Q \: = \:  43.33 \: C}}

Answered by nirman95
17

Answer:

Given:

I = 2t² - 3t + 1

This is the equation of current through.a conductor.

To find:

Charge flowing through the cross-section of the wire in the time interval of 3 - 5 seconds

Concept:

Current is defined as the rate of flow of charge.

Considering flow of charge in a very small time period , we can say that :

 \boxed{ \huge{ \red{ \bold{I =  \dfrac{dq}{dt} }}}}

Calculation:

From the equation , we can continue as :

 \boxed{ \green{ \huge{ \bold{ \displaystyle \int \: dq =  \int \: I \: dt}}}}

 \displaystyle =  > q =  \int(2 {t}^{2}  - 3t + 1)dt

Putting the limits , we get :

 \displaystyle =  > q =  \int_{3}^{5} \: (2 {t}^{2}  - 3t + 1)dt

 =  > q =  \bigg \{ \dfrac{2}{3}  {t}^{3}  -  \dfrac{3}{2}  {t}^{2}  + t \bigg \}_{3}^{5}

  =  > q =  (\frac{2}{3}  \times 98) - ( \frac{3}{2}  \times 16) + 2

 =  > q = 65.33 - 24 + 2

 =  > q = 43.33 \: coulomb

So final answer :

 \boxed{ \blue{ \sf{ \huge{ \bold{q = 43.33 \: C}}}}}

Similar questions