Physics, asked by santhagopinat, 8 months ago

A current of 2A flows through a circular coil of area 4π x 10-2 m2. The magnetic field at the centre

of the coil is

a) 6.28 x 10-6 T b) 628 x 10-6 T

c) 62.8 x 10-6 T d) 0. 628 x 10-6 T​

Answers

Answered by nirman95
4

Given:

A current of 2A flows through a circular coil of area 4π x 10-2 m².

To find:

Magnetic field at the centre of the coil.

Calculation:

Let radius of coil be r ;

 \rm{ \therefore \: area = 4\pi \times  {10}^{ - 2} }

 \rm{  =  >  \: \pi {r}^{2}  = 4\pi \times  {10}^{ - 2} }

 \rm{  =  >  \: {r}^{2}  = 4 \times  {10}^{ - 2} }

 \rm{  =  >  \: r=  \sqrt{4 \times  {10}^{ - 2}} }

 \rm{  =  >  \: r=  2 \times  {10}^{ - 1} }

 \rm{  =  >  \: r=  0.2 \: m}

Now , magnetic field at centre of coil ;

 \therefore \: B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{2\pi i}{r}  \bigg \}

 =  >  \: B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ \dfrac{2\pi (2)}{(0.2)}  \bigg \}

 =  >  \: B =  \dfrac{  \mu_{0}}{4\pi}  \bigg \{ 20\pi \bigg \}

 =  >  \: B =   {10}^{ - 7}  \times \bigg \{ 20\pi \bigg \}

 =  >  \: B = 2\pi \times   {10}^{ - 6}

 =  >  \: B = 2 \times 3.14\times   {10}^{ - 6}

 =  >  \: B = 6.28\times   {10}^{ - 6}  \: tesla

So , final answer is:

 \boxed{ \bf{\: B = 6.28\times   {10}^{ - 6}  \: tesla}}

Similar questions