Math, asked by diamondcart123, 10 months ago

A curve has equation y=8/x +2x.
(i) Find the dy/dx and d^2y/dx^2.
(ii) Find the coordinates of the stationary points and state,with a reason,the nature of each stationary point.

Answers

Answered by shadowsabers03
3

Given,

\longrightarrow\sf{y=\dfrac{8}{x}+2x}

Then,

\longrightarrow\sf{\dfrac{dy}{dx}=\dfrac{d}{dx}\left[\dfrac{8}{x}+2x\right]}

\longrightarrow\sf{\dfrac{dy}{dx}=8\cdot\dfrac{d}{dx}\left(\dfrac{1}{x}\right)+2\cdot\dfrac{dx}{dx}}

\longrightarrow\sf{\dfrac{dy}{dx}=8\cdot\dfrac{d}{dx}\left(x^{-1}\right)+2\cdot1}

\longrightarrow\sf{\dfrac{dy}{dx}=8(-x^{-2})+2}

\longrightarrow\sf{\underline{\underline{\dfrac{dy}{dx}=-\dfrac{8}{x^2}+2}}}

And,

\longrightarrow\sf{\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left[-\dfrac{8}{x^2}+2\right]}

\longrightarrow\sf{\dfrac{d^2y}{dx^2}=-8\cdot\dfrac{d}{dx}\left(\dfrac{1}{x^2}\right)}

\longrightarrow\sf{\dfrac{d^2y}{dx^2}=-8\cdot\dfrac{d}{dx}\left(x^{-2}\right)}

\longrightarrow\sf{\dfrac{d^2y}{dx^2}=-8\cdot-2\left(x^{-3}\right)}

\longrightarrow\sf{\underline{\underline{\dfrac{d^2y}{dx^2}=\dfrac{16}{x^{3}}}}}

The stationary points of \sf{y} are the points where \sf{\dfrac{dy}{dx}=0.} Then,

\longrightarrow\sf{\dfrac{dy}{dx}=0}

\longrightarrow\sf{-\dfrac{8}{x^2}+2=0}

\longrightarrow\sf{\dfrac{8}{x^2}=2}

\longrightarrow\sf{x^2=4}

\longrightarrow\sf{x=\pm2}

For \sf{x=2,}

\longrightarrow\sf{y=\dfrac{8}{2}+2\cdot2}

\longrightarrow\sf{y=8}

For \sf{x=-2,}

\longrightarrow\sf{y=\dfrac{8}{-2}+2\cdot-2}

\longrightarrow\sf{y=-8}

So the points \sf{(-2,\ -8)} and \sf{(2,\ 8)} are the stationary points.

Similar questions