Math, asked by gulchandak9554, 6 months ago

A curve y = f(x) passes through the point p(1, 1). The normal to the curve at p is a(y - 1) + (x - 1) = 0. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the curve is

Answers

Answered by knjroopa
3

Step-by-step explanation:

Given A curve y = f(x) passes through the point p(1, 1). The normal to the curve at p is a(y - 1) + (x - 1) = 0. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the curve is

  • So Normal to the curve is - 1
  •                            y – 1 + x – 1 = 0
  •                        So y = - x + 2
  •                    So slope will be – 1
  • Now normal to the curve is – dx / dy
  •                   So – dx/dy (1,1) = - 1
  • So dy / dx = 1
  • Now dy/dx is proportional to ordinate
  •                So dy/dx α y
  •                     dy/dx = ky
  •                    Or dy / y = k dx
  •         Integrating we get
  •                    So ∫ dy / y = ∫ k dx
  •                     So log y = kx + c
  •                So the point is (1,1)
  •                 So log 1 = 0
  •           So 0 = k + c
  •             Or c = - k
  •    So equation of curve is  
  •                    log y = kx + c
  •             Or log y = kx – k
  •                            = k (x – 1)
  •              Or y = e^k (x – 1)

Reference link will be

https://brainly.in/question/28891211

Answered by shahanaaz90
0

Answer:

upper one is Exactly correct

Similar questions