Math, asked by lakshyagupta1234, 10 months ago

a cyclist covers a distance of 10 km at the speed of 15 km/hr and other 15 km at the speed of 12km/hr. find his average speed for the whole journey​

Answers

Answered by BrainlyPopularman
73

GIVEN :

Cyclist covers a distance of 10 km at the speed of 15 km/hr .

• Cyclist covers a distance of 15 km at the speed of 12 km/hr.

TO FIND :

• Average speed for the whole journey = ?

SOLUTION :

▪︎ According to the first condition –

=> Distance = 10 km , Speed = 15 km/hr

• We know that –

   \\ \longrightarrow { \boxed{ \sf Speed =  \dfrac{Distance}{time} }} \\

• So that –

   \\ \implies \sf 15 =  \dfrac{10}{time} \\

   \\ \implies \sf time =  \dfrac{10}{15} \\

   \\ \implies{ \boxed{ \sf time =  \dfrac{2}{3} hr}}\\

▪︎ According to the second condition –

=> Distance = 15 km , Speed = 12 km/hr

• Using formula –

   \\ \implies \sf 12 =  \dfrac{15}{time} \\

   \\ \implies \sf time =  \dfrac{15}{12} \\

   \\ \implies{ \boxed{ \sf time =  \dfrac{5}{4} hr}}\\

   \\ \:  \:  \:  \sf { \huge{.}} \:  \: Hence \: ,\: Total \:  \: time =\dfrac{5}{4} + \dfrac{2}{3} =  \dfrac{23}{12} \: hr \\

   \\ \:  \:  \:  \sf { \huge{.}} \:  \: And \: \: Total \:  \: distance =10 + 15=25 \: km \\

   \\ \:  \:  \:  \sf { \huge{.}} \:  \: So \: \: that \:,  \: Average \:  \: Speed =  \dfrac{Total \:  \: distance}{Total \:  \: time} \\

   \\ \implies \sf Average \:  \: Speed =  \dfrac{25}{ \left( \dfrac{23}{12} \right) } \\

   \\ \implies \sf Average \:  \: Speed =  \dfrac{25 \times 12}{23} \\

   \\ \implies \sf Average \:  \: Speed =  \dfrac{300}{23} \\

   \\ \implies \large { \boxed{ \sf Average \:  \: Speed =  13.04 \:  \:  \dfrac{km}{hr} }}\\

Answered by Anonymous
22

Distance  (x1) = 10km</p><p>\\ Speed  (y1) = 15kmh</p><p>\\ Time   =  \frac{Distance}{Speed}  </p><p>\\  t1 =  \frac{x1}{y1}  =  \frac{10}{15}  </p><p> \\ t1=  \frac{2}{3}h </p><p>\\ Distance(x2) = 15km</p><p>\\ Speed (y2) = 12kmh </p><p>\\ t2 =  \frac{x2}{y2}   = \frac{15}{12} </p><p>\\ t2 =  \frac{5}{4} h</p><p>\\  Average \: Speed =  \frac{Total \: Distance}{Total \: Time \: Taken} </p><p>\\ Average \: Speed =  \frac{x1 + x2}{t1 + t2} </p><p> \\ Average \: Speed =  \frac{10 + 15}{ \frac{2}{3}  +  \frac{5}{4} }</p><p>\\ Average \: Speed =  \frac{25}{ \frac{8 + 15}{12}}</p><p> \\ Average \: Speed =  \frac{25} {\frac{23}{12}}  </p><p>\\  Average \: Speed =  \frac{300}{23} kmh</p><p>\\ \boxed{\red{Average \: Speed =  13.04 kmh} }

Similar questions