Physics, asked by meero2809, 11 months ago

A cyclist while negotiating a circular path with speed ms-1 is found to bend an angle by 30°with vertical. what is the radius of circular path?(given g=10ms-2)

Answers

Answered by Anonymous
4

\Huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

Derivation For Bending Of Cyclist

\Large \leadsto {\sf{R Sin\theta \: = \: \frac{mv^2}{r}}---(1)}

And

\Large \leadsto {\sf{R Cos \theta \: = \: mg}---(2)}

Now, Divide (1) by (2)

\Large \leadsto {\sf{\frac{\cancel{R} Sin \theta}{\cancel{R} Cos \theta} \: = \: \frac{\cancel{m}v^2}{\frac{r}{\cancel{m}g}}}}

\LARGE \implies {\boxed{\red{\sf{Tan \theta \: = \: \frac{v^2}{rg}}}}}

\rule{200}{2}

A.T.Q,

Angle = 30°

Velocity = 1 m/s

Put Values in formula :

\Large \leadsto {\sf{Tan 30^{\circ} \: = \: \frac{(1)^2}{r(10)}}}

As Tan 30° = 1/√3

\Large \leadsto {\sf{r \: = \: \frac{\sqrt{3}}{1} \: \times \: \frac{1}{10}}}

\Large \leadsto {\sf{r \: = \: \frac{\sqrt{3}}{10}}}

\LARGE {\boxed{\red{\sf{r \: = \: 0.1732 \: m}}}}

Attachments:
Similar questions