Math, asked by 123ballfoot, 10 months ago

A cylinder and a cone are shown below.

A cylinder with height 12 inches and volume 2,512 inches cubed. A cone with height 12 inches and volume 1,256 inches cubed.

Which explains whether the bases of the cylinder and the cone have the same area?

Answers

Answered by mysticd
2

 i) Given \: height \: of \: the \: cylider (H) \\= 12\: inches

 Let \: radius \: of \: the \: base = R \: inches

 Volume (V) = 2512\: ( inches )^{3} \: ( given )

 \implies \pi R^{2} H = 2512

 \implies \pi R^{2} \times 12  = 2512

 \implies R^{2} = \frac{ 2512 }{ 12 \pi } \: --(1)

 ii) Given \: height \: of \: the \: cone (h) \\= 12\: inches

 Let \: radius \: of \: the \: base = r \: inches

 Volume (V) = 1256\: ( inches )^{3} \: ( given )

 \implies \frac{1}{3} \times \pi r^{2} h = 1256

 \implies\frac{1}{3}\times  \pi r^{2} \times 12  = 1256

 \implies r^{2} = \frac{ 1256 \times 3 }{ 12 \pi }

 \implies r^{2} = \frac{ 3768 }{ 12 \pi } \: --(2)

/* From (1) and (2), we conclude that */

\pink { R^{2} \neq r^{2}}

 \implies R \neq r

 \therefore Areas \: of \: cylider \: and \: cone \\are \: not \: equal .

♪••.

Similar questions