Math, asked by vijayna244, 1 year ago

A cylinder container with internal radius of its base 10cm, contains water up to height of 7cm. Find the area of the wet surface of the cylinder

Answers

Answered by aman890rai
0

Answer:

first tell me answer

Step-by-step explanation:

then solve question

Answered by nilesh102
2

  \huge\underline\red{solution} : -  \\  \\ \underline\red{given} : -  \: A  \: cylinder \:  container  \: with  \:  \\ internal \:  radius  \: of  \: its \:  base \:  10 \: cm, \:   \\ contains  \: water \:  up \: to \:  height  \: of \:  7cm. \\  \red{ 1)} \purple{  \: radius = 10 \: cm \:  \: and  \: \: height = 7 \: cm }\\   \\ \underline \red{find}: -  \: area  \: of \:  the  \:  of \:  the \:  cylinder. \\ \\   \red{formula} : - \\  \\ \: Area \: of \: cylinder \:  = 2 \: \pi \: r \: h \:  + \pi  \: {r}^{2}   \\  \\ \: Area \: of \: cylinder \:  = 2  \times \frac{22}{7}  \times 10  \times  7 \:  +  \frac{22}{7}  \times {(10)}^{2}   \\  \\ \: Area \: of \: cylinder \:  = 2  \times 22 \times 10   \:  +   \frac{22}{7} \times 100 \\  \\ \: Area \: of \: cylinder \:  = 440 +  \frac{2200}{7}  \\  \\ \:  Area \: of \: cylinder \:  =  \frac{440 \times 7}{7} +  \frac{2200}{7}  \\  \\ \:  Area \: of \: cylinder \:  =  \frac{3080 }{7}  +  \frac{2200}{7}  \\  \\ Area \: of \: cylinder \:  =  \frac{3080 + 2200 }{7}  \\  \\ Area \: of \: cylinder \:  =  \frac{5280 }{7}  \\  \\  \: Area \: of \: cylinder \:  = 754.2857143  \:  {cm}^{2}  \\  \\ \underline{ hence \: the \: are \: of \: cylindricl \: container \: is}  \\ \underline \red{754.2857143 \:  {cm}^{2} .} \:  \\   \\ \fcolorbox{red}{white}{i \: hope \: it \: helps \: you.}

Similar questions