Math, asked by Anonymous, 5 months ago

A cylinder has a diameter of 20cm. The area of the curved surface is 100 m square . Find the height of the cylinder.​


shaheenlaskar: Thnx

Answers

Answered by praseethanerthethil
2

Answer:

cylinder has a diameter of 20 cm . The area of the curved surface is 100 m square. Find the volume of the cylinder.

⠀⠀⠀⠀⠀⠀⠀{\huge{\underbrace{\rm{Answer}}}}

Answer

⠀⠀

Given:

⠀⠀

Diameter of the cylinder is 20 cm

⠀⠀

Area of the curved surface is 100 m²

To find:

⠀⠀

Find the volume of the cylinder.

⠀⠀

Solution:

⠀⠀

Diameter of the cylinder = 20 cm

.°. Radius of the cylinder(r) = \sf{\dfrac{20}{2}}

2

20

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= \sf{\cancel{\dfrac{20}{2}}\:cm}

2

20

cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= 10 cm

⠀⠀

the curved surface area of the cylinder = 100 m²

Let, the height of the cylinder is h cm

⠀⠀

We know that,

⠀⠀⠀\boxed{\bf{\pink{Curved\:surface\:area\:=2πrh}}}

Curvedsurfacearea=2πrh

⠀⠀

Where,

⠀⠀

r = radius of the cylinder

h = height of the cylinder

π = 22/7

⠀⠀

According to the question,

⠀⠀

⠀⠀⠀⠀⠀\sf{:\implies 2πrh=100}:⟹2πrh=100

⠀⠀

⠀⠀⠀⠀⠀\sf{:\implies 2×\dfrac{22}{7}×10×h=100}:⟹2×

7

22

×10×h=100 ⠀⠀

⠀⠀⠀⠀⠀\sf{:\implies h=\dfrac{100×7}{22×10×2}}:⟹h=

22×10×2

100×7

⠀⠀

⠀⠀⠀⠀⠀\sf{:\implies h=\dfrac{700}{440}}:⟹h=

440

700

⠀⠀

⠀⠀⠀⠀⠀\sf{:\implies h={\cancel{\dfrac{700}{440}}}}:⟹h=

440

700

⠀⠀

⠀⠀⠀⠀⠀\sf{:\implies h=\dfrac{35}{22}}:⟹h=

22

35

⠀⠀

⠀⠀⠀⠀⠀\boxed{\bf{\purple{:⟹\:h\:=1.6\:cm}}}

:⟹h=1.6cm

⠀⠀

.°. height of the cylinder is 1.6 cm

⠀⠀

We also know that,

⠀⠀

⠀⠀⠀\boxed{\bf{\pink{Volume\:of\:cylinder\:=πr^{2}h}}}

Volumeofcylinder=πr

2

h

⠀⠀

\sf{:\implies Volume\:of\:the\:cylinder=πr^{2}h}:⟹Volumeofthecylinder=πr

2

h

⠀⠀

\sf{:\implies Volume\:of\:the\:cylinder=\dfrac{22}{7}×(10)^{2}×1.6\:cm^{3}}:⟹Volumeofthecylinder=

7

22

×(10)

2

×1.6cm

3

⠀⠀

\sf{:\implies Volume\:of\:the\:cylinder=\dfrac{22}{7}×10×10×1.6\:cm^{3}}:⟹Volumeofthecylinder=

722 ×10×10×1.6cm

3

⠀⠀

\sf{:\implies Volume\:of\:the\:cylinder=502.9\:cm^{3}}:⟹Volumeofthecylinder=502.9cm 3

⠀⠀

Therefore,

Volume of the cylinder is 502.9 cm³

Answered by XxMrGlamorousXx
1

Given:

Diameter of the cylinder is\sf\implies{20 cm}⟹20cm

Area of the curved surface is\sf\implies{100 m²}⟹100m²

{\sf{\underline{\overline{To find:-}}}}

Tofind:−

Find the volume of the cylinder.

{\sf{\underline{\overline{Solution:-}}}}

Solution:−

⠀⠀

Diameter of the cylinder\sf\implies{20 cm}⟹20cm

.°. Radius of the cylinder(r) =\sf{\cancel{\dfrac{20}{2}}}

2

20

the curved surface area of the cylinder

\sf\implies{100 m²}⟹100m²

\sf\fbox{Let,}

Let,

the height of the cylinder is h cm

We know that,

\boxed{\bf{\pink{Curved\:surface\:area\:=2πrh}}}

Curvedsurfacearea=2πrh

Where,

r = radius of the cylinder

h = height of the cylinder

π = 22/7

According to the question,

\sf{:\implies 2πrh=100}:⟹2πrh=100

\sf{:\implies 2×\dfrac{22}{7}×10×h=100}:⟹2×

7

22

×10×h=100

\sf{:\implies h=\dfrac{100×7}{22×10×2}}:⟹h=

22×10×2

100×7

\sf{:\implies h=\dfrac{700}{440}}:⟹h=

440

700

\sf{:\implies h={\cancel{\dfrac{700}{440}}}}:⟹h=

440

700

\sf{:\implies h=\dfrac{35}{22}}:⟹h=

22

35

\boxed{\bf{\purple{\:h\:=1.6\:cm}}}

h=1.6cm

height of the cylinder is 1.6 cm

We also know that,

\sf{:\implies \:Volume\:of\:the\:cylinder=πr^{2}h}:⟹Volumeofthecylinder=πr

2

h

\sf{:\implies\:Volume\:of\:the\:cylinder=\dfrac{22}{7}×(10)^{2}×1.6\:cm^{3}}:⟹Volumeofthecylinder=

7

22

×(10)

2

×1.6cm

3

\sf{:\implies\:Volume\:of\:the\:cylinder=\dfrac{22}{7}×10×10×1.6\:cm^{3}}:⟹Volumeofthecylinder=

7

22

×10×10×1.6cm

3

\sf{:\implies\:Volume\:of\:the\:cylinder=502.9\:cm^{3}}:⟹Volumeofthecylinder=502.9cm

3

Therefore,

Volume of the cylinder is 502.9 cm³

Similar questions