Math, asked by priyankatak80, 19 days ago

a cylinder has a radius 7 cm and height 14 cm .Find its lateral surface area wnd total surface area​

Answers

Answered by amansharma264
45

EXPLANATION.

Radius of the cylinder = 7 cm.

Height of the cylinder = 14 cm.

As we know that,

Formula of :

Lateral surface area of cylinder = 2πrh.

Total surface area of cylinder = 2πr(r + h).

Using this formula in the equation, we get.

Lateral surface area of cylinder = 2πrh.

⇒ 2 x 22/7 x 7 x 14.

⇒ 2 x 22 x 14 = 616 cm².

Total surface area of cylinder = 2πr(r + h).

⇒ 2 x 22/7 x 7 x (7 + 14).

⇒ 2 x 22 x (21) = 924 cm².

Lateral surface area of cylinder = 616 cm².

Total surface area of cylinder = 924 cm².

                                                                                                                     

MORE INFORMATION.

(1) Volume of cuboid = L x B x H.

(2) Volume of cube = a³.

(3) Volume of cylinder = πr²h.

(4) Volume of cone = 1/3πr²h.

(5) Volume of sphere = 4/3πr³.

(6) Volume of hemisphere = 2/3πr³.

Answered by StarFighter
31

Answer:

Given :-

  • A cylinder has a radius of 7 cm and height is 14 cm.

To Find :-

  • What is the lateral surface area and total surface area of a cylinder.

Formula Used :-

\clubsuit Lateral Surface Area or Curved Surface Area of Cylinder :

\bigstar \: \: \sf\boxed{\bold{\pink{Lateral\:  Surface\: Area_{(Cylinder)} =\: 2{\pi}rh}}}\: \: \: \bigstar\\

where,

  • π = Pie or 22/7
  • r = Radius
  • h = Height

\clubsuit Total Surface Area or T.S.A of Cylinder Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{T.S.A_{(Cylinder)} =\: 2{\pi}r(h + r)}}}\: \: \: \bigstar\\

where,

  • T.S.A = Total Surface Area
  • π = Pie or 22/7
  • r = Radius
  • h = Height

Solution :-

\sf\bold{\underline{\purple{\clubsuit\: In\: case\: of\: lateral\: surface\: area\: of\: cylinder\: :-}}}\\

Given :

  • Radius = 7 cm
  • Height = 14 cm

According to the question by using the formula we get,

\implies \sf Lateral\: Surface\: Area_{(Cylinder)} =\: 2 \times \dfrac{22}{7} \times 7 \times 14\\

\implies \sf Lateral\: Surface\: Area_{(Cylinder)} =\: \dfrac{44}{7} \times 98\\

\implies \sf Lateral\: Surface\: Area_{(Cylinder)} =\: \dfrac{\cancel{4312}}{\cancel{7}}\\

\implies \sf\bold{\red{Lateral\: Surface\: Area_{(Cylinder)} =\: 616\: cm^2}}\\

\therefore The lateral surface area of a cylinder is 616 cm² .

━━━━━━━━━━━━━━━━━━━━━━━

\sf\bold{\underline{\purple{\clubsuit\: In\: case\: of\: total\: surface\: area\: of\: cylinder\: :-}}}\\

Given :

  • Radius = 7 cm
  • Height = 14 cm

According to the question by using the formula we get,

\implies \sf T.S.A_{(Cylinder)} =\: 2 \times \dfrac{22}{7} \times 7(14 + 7)\\

\implies \sf T.S.A_{(Cylinder)} =\: \dfrac{44}{7} \times 7(21)\\

\implies \sf T.S.A_{(Cylinder)} =\: \dfrac{44}{7} \times 147\\

\implies \sf T.S.A_{(Cylinder)} =\: \dfrac{\cancel{6468}}{\cancel{7}}\\

\implies \sf\bold{\red{T.S.A_{(Cylinder)} =\: 924\: cm^2}}\\

\therefore The total surface area of a cylinder is 924 cm² .

Similar questions