Math, asked by ayeshu47, 4 months ago

A cylinder has base radius 14cm and height 21cm .find 1. area of the base. 2. curved surface area . 3 total surface area .4. volume​

Answers

Answered by BrainlyHero420
53

Answer:

Given :-

  • A cylinder has base radius is 14 cm and height is 21 cm .

To Find :-

  1. Area of the base .
  2. C.S.A of cylinder .
  3. T.S.A of cylinder .
  4. Volume of cylinder .

Formula Used :-

❶ Area of the base :

\boxed{\bold{\large{Area\: =\: {\pi}{r}^{2}}}}

❷ C.S.A of the cylinder :

\boxed{\bold{\large{C.S.A\: of\: the\: cylinder\: =\: 2{\pi}rh}}}

❸ T.S.A of the cylinder :

\boxed{\bold{\large{2{\pi}r(h + r)}}}

❹ Volume of the cylinder :

\boxed{\bold{\large{\pi{r}^{2}h}}}

Solution :-

Given :

  • Radius (r) = 14 cm
  • Height (h) = 21 cm

Area of the base :

⇒ Area = \dfrac{22}{7} \times {14}^{2}

⇒ Area = \dfrac{22}{7} \times 196

⇒ Area = \sf\dfrac{22}{\cancel{7}} \times {\cancel{196}}

⇒ Area = 22 × 28

Area = 616 cm²

\therefore The area of the base is 616 cm² .

\\

C.S.A of the cylinder :

⇒ C.S.A = 2 \times \dfrac{22}{7} \times 14 \times 21

⇒ C.S.A = 2 × 22 × 2 × 21

C.S.A = 1848 cm²

\therefore The curved surface area of the cylinder is 1848 cm² .

\\

T.S.A of the cylinder :

⇒ T.S.A = 2 \times \dfrac{22}{7} \times14(21 + 14)

⇒ T.S.A = 2 \times 44(35)

⇒ T.S.A = 2 × 1540

T.S.A = 3080 cm²

\therefore Total surface area of the cylinder is 3080 cm² .

\\

Volume of the cylinder :

⇒ Volume = \dfrac{22}{7} \times {(14)}^{2} \times 21

⇒ Volume = \dfrac{22}{7} \times 196 \times 21

⇒ Volume = \dfrac{22}{7} \times 4116

⇒ Volume = \sf\dfrac{22}{\cancel{7}} \times {\cancel{4116}}

⇒ Volume = 22 × 588

Volume = 12936 cm²

\therefore The volume of the cylinder is 12936 cm² .


spacelover123: Nice
Glorious31: Good :)
Answered by MaIeficent
18

Step-by-step explanation:

Given:-

  • The base radius of the cylinder (r) = 14cm.

  • The height of the cylinder (h) = 21cm.

To Find:-

  • Area of the base.

  • Curved surface area (CSA)

  • Total surface area (TSA)

  • Volume of the cylinder.

Solution:-

Radius (r) = 14cm

Height (h) = 21cm

\sf Area \: of \: the \: base = \pi r^2

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \dfrac{22}{7}\times (14)^2

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 22 \times 2 \times 14

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 616cm^2

\therefore\underline{ \: \: \underline{ \: \sf Area \: of \: the \: base = 616cm^2\:}\:\:}

\sf CSA \: of \: cylinder = 2 \pi rh

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 2 \times \dfrac{22}{7}\times 14 \times 21

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \dfrac{12936}{7}

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 1848cm^2

\therefore\underline{ \: \: \underline{\: \sf CSA \: of \: the \: cylinder = 1848cm^2\:}\:\:}

\sf TSA \: of \: cylinder = 2 \pi r(h + r)

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 2 \times \dfrac{22}{7}\times 14(21 + 14)

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \dfrac{44}{7}\times 490

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 3080cm^2

\therefore\underline{ \: \: \underline{\: \sf TSA \: of \: the \: cylinder = 3080cm^2\:}\:\:}

\sf Volume \: of \: the \: sphere = \pi r^2 h

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \dfrac{22}{7} \times (14)^2 \times 21

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 22 \times 2 \times 14 \times 21

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 12936cm^3

\therefore\underline{ \: \: \underline{\: \sf Volume \: of \: the \: cylinder = 12946cm^3\:}\:\:}

Similar questions