Math, asked by siddheshsasane7, 4 months ago

A cylinder has hemispherical ends
having radius 14 cm and height 50
cm. Find the total surfacearea

Answers

Answered by EliteZeal
18

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • A cylinder has hemispherical ends

 \:\:

  • Radius is 14 cm

 \:\:

  • Height is 50 cm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The total surface area

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{Curved surface area of cylinder :}}}

 \:\:

➠ 2πrh

 \:\:

 \underline{\bold{\texttt{Outer surface area of hemisphere :}}}

 \:\:

➠ 2πr²

 \:\:

 \underline{\bold{\texttt{Total surface area of given object :}}}

 \:\:

Curved surface area of cylinder + 2(Outer surface area of hemisphere)

 \:\:

➜ 2πrh + 2 × 2πr²

 \:\:

➜ 2πrh + 4πr²

 \:\:

➜ 2πr(h + 2r) -------- (1)

 \:\:

  • Height = 50 cm

  • Radius = 14 cm

 \:\:

Putting these values in (1)

 \:\:

➜ 2πr(h + 2r)

 \:\:

 \sf 2 × \dfrac { 22 } { 7 } × 14(50 + 2 × 14)

 \:\:

 \sf 2 × \dfrac { 22 } { \cancel 7 } × \cancel { 14} (78)

 \:\:

➜ 2 × 22 × 2 × 78

 \:\:

➜ 88 × 78

 \:\:

➨ 6864 sq. cm

 \:\:

  • Hence total surface area of given object is 6864 sq. cm.

 \:\:

═════════════════════════

Answered by EliteZeal
20

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • A cylinder has hemispherical ends

 \:\:

  • Radius is 14 cm

 \:\:

  • Height is 50 cm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The total surface area

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{Curved surface area of cylinder :}}}

 \:\:

➠ 2πrh

 \:\:

 \underline{\bold{\texttt{Outer surface area of hemisphere :}}}

 \:\:

➠ 2πr²

 \:\:

 \underline{\bold{\texttt{Total surface area of given object :}}}

 \:\:

Curved surface area of cylinder + 2(Outer surface area of hemisphere)

 \:\:

➜ 2πrh + 2 × 2πr²

 \:\:

➜ 2πrh + 4πr²

 \:\:

➜ 2πr(h + 2r) -------- (1)

 \:\:

  • Height = 50 cm

  • Radius = 14 cm

 \:\:

Putting these values in (1)

 \:\:

➜ 2πr(h + 2r)

 \:\:

 \sf 2 × \dfrac { 22 } { 7 } × 14(50 + 2 × 14)

 \:\:

 \sf 2 × \dfrac { 22 } { \cancel 7 } × \cancel { 14} (78)

 \:\:

➜ 2 × 22 × 2 × 78

 \:\:

➜ 88 × 78

 \:\:

➨ 6864 sq. cm

 \:\:

  • Hence total surface area of given object is 6864 sq. cm.

 \:\:

═════════════════════════

Similar questions