Math, asked by sunilpotdar5197, 10 months ago

A cylinder having 15 cm diameter and 17 cm height and what is the volume of circular cylinder

Answers

Answered by Brâiñlynêha
2

\huge\mathbb{\underline{SOLUTION:-}}

\bold{given:-}\begin{cases}\sf{Height (h)=17m}\\ \sf{Radius=\frac{15}{2}}\end{cases}

\bf\underline{\underline{According\:To\: Question:-}}

\boxed{\sf{Volume\:of\: cylinder=\pi r{}^{2}h}}

\sf\implies Volume =\pi r{}^{2}h\\ \\ \sf\implies take\:\pi=\frac{22}{7}\\ \\ \sf\implies Volume=\frac{\cancel{22}}{7}\times \frac{15}{\cancel2}\times \frac{15}{2}\times 17\\ \\ \sf\implies Volume= \frac{11\times 15\times 15\times 17}{7\times 2}\\ \\ \sf\implies Volume=\frac{187\times 225}{14}\\ \\ \sf\implies Volume=\cancel{\frac{42075}{14}}\\ \\ \sf\implies Volume=3005.35cm{}^{3}\:\:\:\:\bf(approx)

\boxed{\sf{Volume\:of\: cylinder=3005.35cm{}^{3}}}

\sf\underline{\underline{\red{Some\: Formula\: Related\: cylinder}}}

\sf (1) Total\: surface\:area\:of\: cylinder=2\pi r(h+r)\\ \\ \sf (2) Curve\:surface\:area\:of\: cylinder=2\pi r h\\ \\ \sf (3)Volume\:of\: cylinder=\pi r{}^{2} h

#BAL

#answerwithquality

Answered by 3CHANDNI339
17

 \underline \mathbb{SOLUTION}

 \underline \mathbb{GIVEN}

HEIGHT = 17m

radius =  \frac{15}{2}

 \underline \mathbb{ATQ}

volume \: of \: cylinder = \pi \times  {r}^{2} h

  =  > volume =  \frac{22}{7}  \times   \frac{15}{2}  \times  \frac{15}{2}   \times 17

 =  > volume =  \frac{11 \times 15 \times 15 \times 17}{7 \times 2}

 =  > volume =  \frac{42075}{14}

 =  > volume = 3005.35 {cm}^{3}

 \underline \mathbb{ANSWER}

volume = 3005.35 {cm}^{3}

_______________________________________

#BAL

#Answerwithquality

Similar questions