A cylinder is opened at one end the external diameter is 10cm and thickness is 1 cm if height is 8cm find the volume of metal used in the cylinder
Answers
Answer:
Data:
h (height) = 8 cm
De (external diameter) = 10 cm
radius (external diameter)
De = 2*r → 2r = D → r = De/2 → r = 10/2 → r (radius) = 5 cm
di (internal diameter) = ?
th (thickness) = 2 cm
Total Volume of cylinder:
Vtc = h* \pi *r^2Vtc=h∗π∗r
2
Vtc = 8*3.14*5^2Vtc=8∗3.14∗5
2
Vtc = 8*3.14*25Vtc=8∗3.14∗25
\boxed{Vtc = 628\:cm^3}
Vtc=628cm
3
De = di + 2*thDe=di+2∗th
10 = di + 2*210=di+2∗2
10 = di + 410=di+4
di = 10 - 4di=10−4
di = 6 cmdi=6cm
radius (internal diameter)
Di = 2*r → 2r = Di → r = Di/2 → r = 6/2 → r (radius) = 3 cm
Volume of metal used:
Vm = h* \pi *r^2Vm=h∗π∗r
2
Vm = 8*3.14*3^2Vm=8∗3.14∗3
2
Vm = 8*3.14*9Vm=8∗3.14∗9
Find capacity of cylinder: (internal volume)
To find the capacity of the cylinder, we subtract the total volume value of the cylinder minus the volume value of the metal
V_{cc} = V_{tc} - V_{m}V
cc
=V
tc
−V
m
V_{cc} = 628 - 226.08V
cc
=628−226.08
Answer:
Answer:
Data:
h (height) = 8 cm
De (external diameter) = 10 cm
radius (external diameter)
De = 2*r → 2r = D → r = De/2 → r = 10/2 → r (radius) = 5 cm
di (internal diameter) = ?
th (thickness) = 2 cm
Total Volume of cylinder:
Vtc = h* \pi *r^2Vtc=h∗π∗r
2
Vtc = 8*3.14*5^2Vtc=8∗3.14∗5
2
Vtc = 8*3.14*25Vtc=8∗3.14∗25
\boxed{Vtc = 628\:cm^3}
Vtc=628cm
3
De = di + 2*thDe=di+2∗th
10 = di + 2*210=di+2∗2
10 = di + 410=di+4
di = 10 - 4di=10−4
di = 6 cmdi=6cm
radius (internal diameter)
Di = 2*r → 2r = Di → r = Di/2 → r = 6/2 → r (radius) = 3 cm
Volume of metal used:
Vm = h* \pi *r^2Vm=h∗π∗r
2
Vm = 8*3.14*3^2Vm=8∗3.14∗3
2
Vm = 8*3.14*9Vm=8∗3.14∗9
Find capacity of cylinder: (internal volume)
To find the capacity of the cylinder, we subtract the total volume value of the cylinder minus the volume value of the metal
V_{cc} = V_{tc} - V_{m}V
cc
=V
tc
−V
m
V_{cc} = 628 - 226.08V
cc